
Research Statement
Abu Naser Masud

http://costa.ls.fi.upm.es/~anm/

My principal research area is on analysis, specification, and verification of software systems. Soft-

ware development has reached an era where the demand for obtaining reliable, correct and efficient

software has increased significantly. Motivated by this ever increasing demand of formally verifying

correct software code, my primary research goals have been directed towards analyzing and under-

standing software systems. More particularly, I am interested both in analyzing source code statically

and analyzing an abstract model of the system which captures some properties of the original program

to be verified.

Automatic program analysis and verification are challenging due to complex program semantics,

difficulty in obtaining appropriate formal model of the given program, limited scalability of the existing

mathematical theories, precision-applicability-scalability trade-off and so on. With this motivation and

challenges in mind, I started working on static program analysis for inferring complexity properties

of the given program. Automatic inference of computational complexity properties is of the utmost

importance in understanding the efficiency (e.g. the input program has polynomial execution behavior)

or reliability (e.g. the program will not consume more than 1000K memory) of program code.

In the following, I present some of my contributions in more detail and outline briefly about my

future research plans.

Automatic Complexity Analysis

The aim of automatic complexity analysis is to estimate the bound of resource consumption (aka cost) of

executing a given program as a function of its input data sizes. Existing complexity analysis frameworks

(e.g. ACE [9], CiaoPP [8], Costa [3] etc.) infer complexity bounds that are either not precise or the

analysis approach is not widely applicable. In my approach [4], I have developed techniques based on

symbolic computation and static analysis that infer precise bounds and are widely applicable. Due to

the difficulty in underapproximating execution cost, the framework for the estimation of lower bound

resource consumption either does not exist (e.g. Costa) or exists with a very limited applicability (e.g.

CiaoPP). The main advantage of my approach is that it can be applied in a dual way to infer very

precise and nontrivial lower bounds. The approach is completely automatic and the efficiency does

not depend on the structural complexity of the inferred closed-form symbolic formulas.

Termination Analysis

There are theoretical interests in understanding the degree of solvability of inferring resource bounds

for some class of programs. In my approach, cost analysis requires solving the termination problem

of simple integer loops for bounding the loop iterations or recursion depths. Hence, study of the

theoretical limits for termination analysis, which is important for the termination analysis itself, can

be inherited to the limits of cost analysis. In the termination analysis [5] of simple integer loops, I

have shown that it is undecidable when the body of the loop is expressed by a set of linear inequalities

where an arbitrary irrational is allowed as a coefficient; when the loop is a sequence of instructions,

that compute either linear expressions or the step function; or when the loop body is a piecewise linear

deterministic update with two pieces. For integer constraint loops with rational coefficients only, I

http://costa.ls.fi.upm.es/~anm/


have shown that a Petri net can be simulated with such a loop which implies some interesting lower

bounds.

Future Research Plan

Abstract Program Model. The classical approach of static complexity analysis first infers an

abstract program model from the input program. This abstract model captures the cost of the input

program while leaving all the details of programming language specific features. Abstract program

models vary according to the degree of expressiveness. Less expressive models are easy to analyze with

existing tools and techniques but possibly do not capture important program properties. My future

research plan includes understanding the theoretical limits on the expressiveness of various formal

program models with respect to obtaining different qualitative or quantitative program properties.

For example, given an abstract program model, I am interested to know weather it is possible to infer

amortized complexity of the corresponding program; or weather the given model allows inferring costs

of the corresponding program which allows nested function calls or have nonlinear input-output size

relations etc.

Cost Analysis for Concurrent Programs. Cost analysis of thread-based concurrent programs

are notoriously difficult due to a large number of thread interleaving which makes the static inference

of shared variables value at particular program point much harder. Cost analysis requires inferring

invariant relations among program variables or data structures. Due to the difficulty in approximating

shared variables value, often the input-output size relations are not precise enough to capture relevant

costs of the given thread. Existing verification or cost analysis approaches restrict the concurrency

model by restricting the number of context-switches [1], number of running threads [6], concurrency

primitives [2] and so on. My future plan is to investigate about cost analysis framework for different

concurrency models.

In order to obtain cost analysis of thread based concurrent programs, we need to obtain the notion

of costs that are relevant for concurrent programs. The next step would be to infer the input-output

size relation which is the most tricky part of the analysis. Inferring this input-output size relation

requires inferring the invariants (both global invariants on shared variables and local invariants on

thread local variables) at different program points. There are some works [1, 7] on inferring invariants

for thread-based concurrent programs but are restricted in the sense that either they work on programs

where the number of context-switches are limited or the inferred invariants are not able to capture

sophisticated relationships among variables suitable for cost analysis. Sometimes, even if the relational

invariants are possible to infer, they are sufficient only to prove program assertions in most cases. For

cost analysis, we need to have sophisticated invariants that capture both relational invariants (e.g.

x ≥ x′ + y) and non-relational invariants (e.g. x ≥ c) at the same time, and may need to infer the

progress on the values of the shared variables until a particular program point. Also, sharing or alias

analysis will be required together with the program invariants which in turn will help obtaining loop

bounds for threads in the concurrent setting.

Termination Analysis. As I have mentioned before, termination analysis is important from the

point of view of program verification as well as understanding theoretical and practical limits of cost

analysis. In my previous research [5], I have left some open questions regarding the termination

property of some simple integer loops. I would like to investigate the decidability property of simple

loops where the loop conditions are affine linear inequality constraints, loop updates are affine linear



updates and all program variables are over the integers. It has been conjectured that termination of

this loop is decidable. I am interested in investigating its decidability on termination by analyzing

the property of complex numbers in the context of linear algebra. This is because if we represent

the update of the program variables using matrix notation, the property of this matrix after some

iterations depend on eigenvalues and eigenvectors (elements of which are possibly in the complex

domain) of that matrix. Then in the integer domain, complex eigenvalues represent repetitions on the

values of program variables inside the loop and hence a possible non-termination. I am also interested

in investigating the decidability property of the previous loops where all loop updates are affine linear

inequality constraints, as this is important in the context of program analysis where all updates are

abstracted by linear inequalities and ask for the termination of those loops.

So far, I have presented some future research plans on cost and termination analysis. In general, I

would like to explore techniques on inferring quantitative program properties which can be either accu-

mulative or non-accumulative. Finally, I would also like to extend my research area in the algorithmic

verification of programs deployed in different computational environments.

References

[1] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, and G. Puebla. Cost analysis of concurrent

oo programs. In H. Yang, editor, APLAS, volume 7078 of Lecture Notes in Computer Science,

pages 238–254. Springer, 2011.

[2] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, and G. Puebla. COSTABS: A Cost and

Termination Analyzer for ABS. In Proceedings of the 2012 ACM SIGPLAN Workshop on Partial

Evaluation and Program Manipulation, PEPM 2012, Philadelphia, Pennsylvania, USA, January

23-24, 2012, pages 151–154. ACM Press, January 2012.

[3] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in Static Cost

Analysis. Journal of Automated Reasoning, 46(2):161–203, February 2011.

[4] E. Albert, S. Genaim, and A. N. Masud. On the inference of resource usage upper and lower

bounds. ACM Transactions on Computational Logic, 2013. To appear.

[5] A. M. Ben-Amram, S. Genaim, and A. N. Masud. On the termination of integer loops. ACM

Trans. Program. Lang. Syst., 34(4):17, 2012.

[6] B. Cook, A. Podelski, and A. Rybalchenko. Proving thread termination. In J. Ferrante and K. S.

McKinley, editors, PLDI, pages 320–330. ACM, 2007.

[7] J. Field and M. Hicks, editors. Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January

22-28, 2012. ACM, 2012.

[8] J. A. Navas, E. Mera, P. López-Garćıa, and M. V. Hermenegildo. User-definable resource bounds

analysis for logic programs. In V. Dahl and I. Niemelä, editors, ICLP, volume 4670 of Lecture

Notes in Computer Science, pages 348–363. Springer, 2007.



[9] M. Rosendahl. Automatic complexity analysis. In Proceedings of the fourth international conference

on Functional programming languages and computer architecture, FPCA ’89, pages 144–156, New

York, NY, USA, 1989. ACM.


