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Abstract. Cost analysis aims at determining the amount of resources
required to run a program in terms of its input data sizes. Automatically
inferring precise bounds, while at the same time being able to handle a
wide class of programs, is a main challenge in cost analysis. (1) Existing
methods which rely on computer algebra systems (CAS) to solve the ob-
tained cost recurrence equations (CR) are very precise when applicable,
but handle a very restricted class of CR. (2) Specific solvers developed
for CR tend to sacrifice accuracy for wider applicability. In this paper, we
present a novel approach to inferring precise upper and lower bounds on
CR which, when compared to (1), is strictly more widely applicable while
precision is kept and when compared to (2), is in practice more precise
(obtaining even tighter complexity orders), keeps wide applicability and,
besides, can be applied to obtain useful lower bounds as well. The main
novelty is that we are able to accurately bound the worst-case/best-case
cost of each iteration of the program loops and, then, by summing the
resulting sequences, we achieve very precise upper/lower bounds.

1 Introduction

Static cost analysis [13] aims at automatically inferring the resource consumption
(or cost) of executing a program as a function of its input data sizes. The classical
approach to cost analysis consists of two phases. First, given a program and a
cost model, the analysis produces cost relations (CRs), i.e., a system of recursive
equations which capture the cost of the program in terms of the size of its input
data. Let us motivate our work on the contrived example depicted in Fig. 1a.
The example is sufficiently simple to explain the main technical parts of the
paper, but still interesting to understand the challenges and precision gains. For
this program and the memory consumption cost model, the cost analysis of [3]
generates the CR which appears in Fig. 1b. This cost model estimates the number
of objects allocated in the memory. Cost analyzers are usually parametric on the
cost model, e.g., cost models widely used are the number of executed bytecode
instructions, number of calls to methods, etc. Observe that the structure of the
Java program and its corresponding CR match. The equations for C correspond
to the for loop, those of B to the inner while loop and those of A to the outer
while loop. The recursive equation for C states that the memory consumption
of executing the inner loop with 〈k, j, n〉 such that k<n+j is 1 (one object) plus



vo id f ( i n t n ) {
L i s t l = nu l l ;
i n t i =0;
whi le ( i<n ) {

i n t j =0;
whi le ( j< i ) {

f o r ( i n t k=0;k<n+j ; k++)
l=new L i s t ( i ∗k∗ j , l ) ;

j=j+random ( ) ? 1 : 3 ; }
i=i+random ( ) ? 2 : 4 ;

} }
(a) Running Example

F (n) = A(0, n) {}
A(i, n) = 0 {i ≥ n}
A(i, n) = B(0, i, n) + A(i′, n)

{ i < n, i + 2 ≤ i′ ≤ i + 4}
B(j, i, n) = 0 {j ≥ i}
B(j, i, n) = C(0, j, n) + B(j′, i, n)

{j < i, j + 1 ≤ j′ ≤ j + 3}
C(k, j, n) = 0 {k ≥ n + j}
C(k, j, n) = 1 + C(k′, j, n)

{k′ = k + 1, k < n + j}

(b) CRs for Memory Consumption

Fig. 1: Running Example and its Cost Relation System

that of executing the loop with 〈k′, j, n〉 where k′=k+1. The recursive equation
for B states that executing the loop with 〈j, i, n〉 costs as executing C(0, j, n)
plus executing the same loop with 〈j′, i, n〉 where j+1≤j′≤j+3. While, in the
Java program, j′ can be either j+1 or j+3, due to the static analysis, the case
for j+2 is added in order to have a convex shape [7]. The process of generating
CRs heavily depends on the programming language and, thus, multiple analyses
have been developed for different paradigms. However, the resulting CRs are a
common target of cost analyzers.

Our work focuses on the second phase of cost analysis: once CRs are gener-
ated, analyzers try to compute closed-forms for them, i.e., cost expressions which
are not in recursive form. Two main approaches exist: (1) Since cost relations are
syntactically quite close to recurrence relations, most cost analysis frameworks
rely on existing Computer Algebra Systems (CAS ) for finding closed-forms. Un-
fortunately, only a restricted class of CRs can be solved using CAS , namely only
some of those which have an exact solution. In practice, this seldom happens.
For instance, in the cost relation B, variable j′ can increase by one, by two or
by three at each iteration, so an exact cost function which captures the cost of
any possible execution does not exist. (2) Instead, specific upper-bound solvers
developed for CRs try to reason on the worst-case cost and obtain sound upper-
bounds (UBs) of the resource consumption. As regards lower-bounds (LBs), due
in part to the difficulty of inferring under-approximations, general solvers for
CRs able to obtain useful approximations of the best-case cost have not been
developed yet. As regards the number of iterations, for B, the worst-case (resp.
best-case) cost must assume that j′ increases by one (resp. three) at each itera-
tion. Besides, there is the problem of bounding the cost of each of the iterations.
For UBs, the approach of [2] assumes the worst-case cost for all loop iterations.
E.g., an UB on the cost of any iteration of B is n0+i0−1, where n0 and i0 are
respectively the initial values for n and i. This corresponds to the memory allo-
cation of the last iteration of the corresponding while loop. This approximation,
though often imprecise, makes it possible to obtain UBs for most CRs (and thus
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programs). Observe that it is not useful to obtain LBs since by assuming the
best-case cost for all iterations, the obtained LB would be in most cases zero.

Needless to say, precision is fundamental for most applications of cost anal-
ysis. For instance, UBs are widely used to estimate the space and time require-
ments of programs execution and provide resource guarantees [8]. Lack of preci-
sion can make the system fail to prove the resource usage requirements imposed
by the software client. LBs are used to scheduling the distribution of tasks in
parallel execution. Likewise, precision will be essential to achieve a satisfactory
scheduling. A main achievement in this paper is the seamless integration of both
approaches so that we get the best of both worlds: precision as (1), whenever
possible, while applicability as close to (2) as possible. Intuitively, the precision
gain stems from the fact that, instead of assuming the worst-case cost for all
iterations, we infer tighter bounds on each of them in an automatic way and
then approximate the summation of the sequence. For UBs, we do so by taking
advantage of existing automatic techniques, which are able to infer UBs on the
number of loop iterations and the worst-case cost of all of them, in order to
generate a novel form of (worst-case) recurrence relations which can be solved
by CAS . The exact solution of such recurrence relation (RR) is guaranteed to
be a precise UB of the original CR. As another contribution, we present a new
technique for inferring LBs on the number of iterations. Then, the problem of
inferring LBs on the cost becomes dual to the UBs.

To the best of our knowledge, this is the first general approach to inferring
LBs from CRs and, as regards UBs, the one that achieves a better precision
vs. applicability balance. Importantly, when CRs originate from nested loops
in which the cost of the inner loop depends on the outer loop, our approach
obtains more precise bounds than [9, 2]. Moreover, as our experiments show, we
are able to produce upper bounds with a tighter complexity order than those
inferred by [9, 2], e.g., improving from O(n ∗ log(n)) to O(n). On the other
hand, when compared to [10], our approach is of wider applicability in the sense
that it can infer general polynomial, exponential and logarithmic bounds, not
only univariate polynomial bounds as [10]. Since CRs obtained from different
programming languages have the same features, our work is applicable to cost
analysis of any language. Preliminary experiments on Java (bytecode) programs
confirm the good balance between the accuracy and applicability of our analysis.

2 Preliminaries

The sets of natural, integer, real, non-zero natural and non-negative real values
are denoted respectively by N, Z, R, N+ and R+. We write x, y, z to denote vari-
ables which range over Z. A linear expression has the form v0+v1x1 + . . .+vnxn,
where vi∈Z. A linear constraint (over Z) has the form l1≤l2, where l1 and l2 are
linear expressions. We write l1=l2 instead of l1≤l2 ∧ l2≤l1, and l1<l2 instead of
l1+1≤l2. We use t̄ to denote a sequence of entities t1, . . . , tn. We use ϕ or Ψ to
denote a set (conjunction) of linear constraints and ϕ1 |= ϕ2 to indicate that ϕ1

implies ϕ2. A mapping from a set of variables to integers is denoted by σ.
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2.1 Cost Relations: The Common Target of Cost Analyzers

Let us now recall the general notion of cost relation (CR) as defined in [2] which
generalizes the CRs yield by most analyzers. The basic building blocks of CRs
are the so-called cost expressions e which are generated using this grammar:

e::= r | nat(`) | e + e | e ∗ e | er | log(nat(`)) | nnat(l) | max(S)

where r ∈ R+, n ∈ N+, l is a linear expression, S is a non empty set of cost ex-
pressions and nat : Z→ N is defined as nat(v)= max({v, 0}). Importantly, linear
expressions are always wrapped by nat in order to avoid negative evaluations.
For instance, as we will see later, an UB for C(k, j, n) is nat(n+ j− k). Without
the use of nat, the evaluation of C(5, 5, 11) results in the negative cost −1 which
must be evaluated to zero, since they correspond to executions in which the for

loop is not entered (i.e., k ≥ n+ j).

Definition 1 (Cost Relation). A cost relation C is defined by a set of equa-

tions of the form E≡〈C(x̄)=e+
∑k
i=1Di(ȳi)+

∑n
j=1 C(z̄j), ϕ〉 with k, n≥0, where

C and Di are cost relation symbols with Di 6=C; all variables x̄, ȳi and z̄j are
distinct; e is a cost expression; and ϕ is a set of linear constraints over vars(E).

The evaluation of a CR C for a given valuation v̄, denoted C(v̄), is like a con-
straint logic program [11] and consists of the next steps: (1) first a matching

equation of the form 〈C(x̄) = e +
∑k
i=1Di(ȳi) +

∑n
j=1 C(z̄j), ϕ〉 is chosen; (2)

then, we need to choose an assignment σ s.t. σ |= v̄ = x̄ ∧ ϕ; (3) then, evalu-
ate e w.r.t. σ and accumulate it to the result; and (4) evaluate each call Di(v̄i)
where v̄i = σ(ȳi) and C(v̄j) where v̄j = σ(z̄j) . The result (i.e., the cost of the
execution) of the evaluation is the sum of all cost expressions accumulated in
step (3). Even if the original program is deterministic, due to the abstractions
performed during the generation of the CR, it might happen that several results
can be obtained for a given C(v̄). Correctness of the underlying analysis used to
obtain the CR must ensure that the actual cost is one of such solutions (see [2]).
This makes it possible to use CR to infer both UBs and LBs from them.

Example 1. Let us evaluate B(0, 3, 3). The only matching equation is the sec-
ond one for B. In step (2), we choose an assignment σ. Here we have a non-
deterministic choice for selecting the value of j′ which can be 1, 2 or 3. In
step (4), we evaluate the cost of C(0, 0, 3). Finally, one of the recursive calls of
B(1, 3, 3), B(2, 3, 3) or B(3, 3, 3) will be made, depending on the chosen value
for j′. If we continue executing all possible derivations until reaching the base
cases, the final result for B(0, 3, 3) is any of {9, 10, 13, 14, 15, 18}. The actual cost
is guaranteed to be one of such values.

W.l.o.g., we formalize our method by making two simplifications: (1) Direct
recursion: we assume that all recursions are direct (i.e., cycles in the call graph
are of length one). Direct recursion can be automatically achieved by applying
partial evaluation as described in [2]. (2) Standalone cost relations: we assume
that CRs do not depend on any other CR, i.e., the equations do not contain
external calls and thus have this simplified form 〈C(x̄) = e+

∑n
j=1 C(z̄j), ϕ〉. This
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can be assumed because our approach is compositional. We start by computing
bounds for the CRs which do not depend on any other CRs, e.g., C in Fig. 1b
is solved by providing the UB nat(n + j − k). Then, we continue by replacing
the computed bounds on the equations which call such relation, which in turn
become standalone. For instance, replacing the above solution in the relation B
results in the equation B(j, i, n) = nat(n + j) + B(j′, i, n), {j < i, j + 1 ≤ j′ ≤
j + 3}. This operation is repeated until no more CR need to be solved. In what
follows, CR refers to standalone CRs in direct recursive form.

2.2 Single-Argument Recurrence Relations

It is fundamental for this paper to understand the differences between CRs and
RRs. The following features have been identified in [2] as main differences, which
in turn justify the need to develop specific solvers to bound CRs:

1. CRs often have multiple arguments that increase or decrease over the rela-
tion (e.g., in A variable i′ increases). The number of evaluation steps (i.e.,
recursive calls performed) is often a function of such several arguments.

2. CRs often contain inexact size relations, e.g., variables range over an interval
[a, b] (e.g., variable j′ in B). Thus, given a valuation, we might have several
solutions which perform a different number of evaluation steps.

3. Even if the original programs are deterministic, due to the loss of preci-
sion in the first stage of the static analysis, CRs often involve several non-
deterministic equations. This will be further explained in Sec. 4.3.

As a consequence of 2 and 3, an exact solution often does not exist and hence
CAS just cannot be used in such cases. But, even if a solution exists, due to
such three additional features, CAS do not accept CRs as a valid input. Below,
we define a class of recurrence equations that CAS can handle.

Definition 2 (single-argument RR). A single-argument recurrence relation
C is defined by at most one recursive equation 〈C(x) = E +

∑n
i=1 C(x − 1)〉

where E is a function on x (and might have constant symbols), and a base case
〈C(0) = κ〉 where κ is a symbol representing the value of the base case.

Depending on the number of recursive calls in the recursive equation and the
expression E, such solution can be of different complexity classes (exponential,
polynomial, etc.). A closed-form solution for C(x), if exists, is an arithmetic
expression that depends only on the variable x, the base-case symbol κ, and
might include constant symbols that appear in E. W.l.o.g., in what follows, we
assume that κ = 0. In the implementation, we replace κ in the closed-form UB
(resp. LB) by the maximum (resp. minimum) value that it can take, as done
in [2].

3 An Informal Account of Our Approach

This section informally explains the approximation we want to achieve and com-
pares it to the actual cost and the approximation of [2]. Consider a CR in its
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simplest form with a base case 〈C(x̄)=0, ϕ0〉 and a recursive case with a single
recursive call 〈C(x̄)=e+C(x̄′), ϕ1〉. The challenge is to accurately estimate the
cost of C(x̄) for any input. CAS aim at obtaining the exact cost function. As
we have discussed in Sec. 2.2, this is often not possible since even a single eval-
uation has multiple solutions. Thus, the goal of static cost analysis is to infer
closed-form UBs/LBs for C. Our starting point is the general approximation
for UBs proposed by [2] which has two dimensions. (1) Number of applications
of the recursive case: The first dimension is to infer an UB on the number of
times the recursive equations can be applied (which, for loops, corresponds to
the number of iterations). This is done by inferring an UB n̂ on the length of
chains of recursive calls; (2) Cost of applications: The second dimension is to
infer an UB ê for all ei. Then, for a relation with a single recursive call, n̂ ∗ ê is
guaranteed to be an UB for C. If the relation C had two recursive calls, the solu-
tion would be an exponential function of the form 2n̂∗ê. Programming-languages
techniques of wide applicability have been proposed by [2] in order to solve the
two dimensions, as detailed below.

Ranking functions. A ranking function is a function f such that for any
recursive equation 〈C(x̄)=e+C(x̄1)+ · · ·+C(x̄k), ϕ〉 in the CR, it holds that
∀1≤i≤k.ϕ |= f(x̄)>f(x̄i)∧f(x̄)>0. This guarantees that when evaluating C(v̄),
the length of any chain of recursive calls to C cannot exceed f(v̄). Thus, f is
used to bound the length of these chains [2, 5, 6]. We rely on [2] for automatically

inferring a ranking function f̂C(x̄0) for C (variables x̄0 denote the initial values).

Maximization. In [2] the second dimension is solved by first inferring an invari-
ant 〈C(x̄0) ; C(x̄), Ψ〉, where Ψ is a set of linear constraints, which describes
the relation between the values that x̄ can take in any recursive call and the
initial values x̄0. Then in order to generate ê each nat(l) ∈ e is replaced by nat(l̂)

where l̂ is a linear expression (over x̄0) which is an UB for any valuation of l. We

rely on the techniques of [2] in order to automatically obtain nat(l̂) for nat(l).

Our challenge is to improve precision of [2] while keeping a similar applicabil-
ity for UBs and, besides, be able to apply our approach to infer useful LBs. The
fundamental idea is to generate a sequence of (different) elements u1, . . . , un̂ such
that for any concrete evaluation e1, . . . , en it holds ∀0 ≤ i ≤ n−1. un̂−i≥en−i.
Note that it is ensured that the last n elements of the u sequence are larger than
(or equal to) the n elements of the e sequence, but it is not guaranteed that
ui≥ei. This guarantees that u1+ · · ·+un̂ is an UB for e1+ · · ·+en. Our UB is
potentially more precise than n̂∗ê, since each ei is approximated more tightly
by a corresponding uj . Technically, we do this by transforming the CR into
a (worst-case) RR (as in Def. 2) whose closed-form solution is u1 + · · · + un̂.
The novel idea is to view u1, · · · , un̂ as an arithmetic sequence that starts from
un̂≡ê and each time decreases by ď where ď is an under approximation of all
di=ei+1−ei, i.e., ui=ui−1+ď. In our approach the problem of inferring LBs is
dual, namely we can infer a LB ň on the length of chains of recursive calls,
the minimum value ě to which ei can be evaluated, and then sum the sequence
`1, . . . , `ň where `i=`i−1+ď and `1=ě.
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4 Inference of Precise Upper Bounds

In this section, we present our approach to accurately infer UBs on the resource
consumption in three steps: first in Sec. 4.1, we handle a subclass of CRs which
accumulate a constant cost, then we handle CRs which accumulate non-constant
costs in Sec. 4.2 and CRs with multiple overlapping equations in Sec. 4.3.

4.1 Constant Cost Relations

We consider CRs defined by a single recursive equation with constant cost:

〈C(x̄) = 0, ϕ1〉 | 〈C(x̄) = e+C(x̄1)+· · ·+C(x̄k), ϕ2〉 (1)

where e contributes a constant cost, i.e., it is a constant number or an expression
that always evaluates to the same value. As explained in Sec. 3, any chain of
recursive calls in C is at most of length f̂C(x̄0) (when starting from C(x̄0)). We
aim at obtaining an UB for C by solving a RR PC in which all chains of recursive
calls are of length f̂C(x̄0). Intuitively, PC(x) can be seen as a special case of a
RR with the same number of recursive calls as in C, where all chains of recursive
calls are of length x, and each application accumulates the constant cost e. Its
solution can be then instantiated for the case of C by replacing x by f̂C(x̄0).

Definition 3. The worst-case RR of C is 〈PC(x)=e+PC(x−1)+ · · ·+PC(x−1)〉.

The main achievement of the above transformation is that, for constant CRs,
we get rid of their problematic features described in Sec. 2.2 which prevented us
from relying on CAS to obtain a precise solution. The following theorem explains
how the closed-form solution of the RR PC can be transformed into an UB for
the CR C.

Theorem 1. If E is a solution for PC(x) then E[x/f̂C(x̄0)] is an UB for C(x̄0).

Example 2. The worst-case RR of the CR C of Fig. 1b is 〈PC(x)=1+PC(x−1)〉,
which is solved using CAS to PC(x)=x for any x≥0. The UB for C is obtained

by replacing x by f̂C(k0, j0, n0)=nat(j0+n0−k0).

4.2 Non-constant Cost Relations

During cost analysis, in many cases we obtain CRs like the one of Eq. 1, but
with a non-constant expression e which is evaluated to different values ei in
different applications of the recursive equation. The transformation in Def. 3
would not be correct since in these cases e must be appropriately related to x.
In particular, the main difficulty is to simulate the accumulation of the non-
constant expressions ei at the level of the RR. As we have illustrated in Sec. 3,
the novel idea is to simulate this behavior with an arithmetic sequence that
starts from the maximum value that e can take, and in each step decreases by
the minimum distance ď between two consecutive expressions ei and ei+1. Since
the expression e might have a complex form (e.g., exponential, polynomial, etc),
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inferring a precise LB on the distance ď is usually impractical. A key observation
in our approach is that, since variables are wrapped by nat, it is enough to reason
on the behavior of its nat sub-expressions, i.e., we only need to understand how
each nat(l) of e (denoted nat(l) ∈ e) changes along a sequence of recursive calls.

Definition 4 (nat with linear behaviour). Consider the CR C of Eq. 1 with
e a (possibly) non-constant expression. We say that a given nat(l) ∈ e is linearly
increasing (resp. decreasing) if there exists a non-negative integer ď, such that
for a given renamed apart instance of the recursive equation 〈C(ȳ) = e′+C(ȳ1)+
· · ·+C(ȳk), ϕ′2〉, it holds that ϕ2 ∧ϕ′2 ∧ x̄i = ȳ |= l′− l ≥ ď (resp. ϕ2 ∧ϕ′2 ∧ x̄i =
ȳ |= l − l′ ≥ ď) for any x̄i, where nat(l′) ∈ e′ is the renaming of nat(l).

In practice, computing ď for a given nat(l) ∈ e can be done using integer pro-
gramming tools. In what follows, when the conditions of Def. 4 hold for a given
nat(l) ∈ e, we say that it has a linear behavior. Moreover, when all nat(l) ∈ e
have the same linear behavior (i.e., all increasing or all decreasing), we say that
e has a linear behavior.

Example 3. ForB, replacing C(0, j, n) by the UB nat(n+j) computed in Ex. 2 re-
sults in 〈B(j, i, n)=nat(n+j)+B(j′, i, n), ϕ1〉, where ϕ1 = {j<i, j+1≤j′≤j+3}.
Its renamed apart instance is 〈B(jr, ir, nr) = nat(nr+jr) + B(j′r, ir, nr), ϕ2〉
where ϕ2={jr<ir, jr+1≤j′r≤jr+3}. Then, the formula ϕ1∧ϕ2∧{j′=jr, i=ir, n =
nr} |= (nr+jr)−(n+j) ≥ ď holds for ď=1. Therefore, nat(n+j) increases linearly.

Let us intuitively explain how our method works by focusing on a single nat(l) ∈ e
within the relation C. Assume that during the evaluation of an initial query
C(x̄0), nat(l) is evaluated to nat(l1), . . . , nat(ln) in n consecutive recursive calls,
and suppose that it is linearly increasing at least by ď, i.e., li+1 − li ≥ ď for all
1 ≤ i ≤ n− 1. As explained in Sec. 3, we can infer an expression nat(l̂) which is

an UB for all nat(li), and a ranking function f̂C such that n ≤ f̂C(x̄0). A tight

approximation is the arithmetic sequence which starts from nat(l̂) and each time
decreases by ď. Clearly, the first element of this sequence is greater than nat(ln),
the second is greater than nat(ln−1), and so on.

However, a main problem is that, since f̂C provides an over-approximation of
the actual number of iterations, the sequence might go to negative values. This is
because an imprecise (too large) f̂C would lead to a too large decrease ď∗ f̂C(x̄0)

and the smallest element nat(l̂)− ď∗ f̂C(x̄0) (and possibly other subsequent ones)
could be negative. Hence, the approximation would be unsound since the actual
evaluations of such negative values are zero. We avoid this problem by viewing
this sequence in a dual way: we start from the smallest value and in each step
increase it by ď. Since still the smallest values could be negative, we start from
nat(l̂−ď ∗ f̂C(x̄0)) which is guaranteed to be positive and greater than or equal

to nat(l̂)−ď ∗ f̂C(x̄0). The next definition uses this intuition to replace each nat
by an expression that generates its corresponding sequence at the level of RR.

Definition 5. Consider the CR C of Eq. 1 where e has a linear behavior. Let
f̂C(x̄0) = nat(l′) be its corresponding ranking function. We define its associated
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worst-case RR as 〈PC(x) = Ee + PC(x − 1) + · · · + PC(x − 1)〉 where Ee is

obtained from e by replacing each nat(l) ∈ e by nat(l̂ − ď ∗ l′) + x ∗ ď.

Definition 5 generalizes Def. 3 and an equivalent theorem to Theorem 1 holds.

Theorem 2. If E is a solution for PC(x) then E[x/f̂C(x̄0)] is an UB for C(x̄0).

Example 4. Following Ex. 3, we have that ď=1. Since nat(n0+i0−1) is an UB of

the cost nat(n+j) accumulated in B, and f̂B(j0, i0, n0)=nat(i0−j0), according to
Def. 5, we have 〈PB(x)=nat(n0+i0−1−(i0 − j0) ∗ 1)+x ∗ 1+PB(x− 1)〉 which is
solved by CAS to PB(x)=nat(n0 +j0−1)∗x+x∗ (x+1)/2. Thus, B(j0, i0, n0) =
PB(x)[x/nat(i0− j0)]. Similarly, for A we obtain the RR PA(x) = (q+2x)(q/2+
x)+r(q+2x)+q/2+x+PA(x−1) where q = nat(i0−2) and r = nat(n0−1), which
is solved to PA(x) = qx2+qrx+rx+2/3x3+rx2+3/2x2+5/6x+1/2q2x+3/2qx.
Thus, A(i0, n0) = PA(x)[x/nat((n0 − i0)/2)]. Finally, for F , we obtain the UB
F (n0) = y(4y2 +6zy+9y+6z+5)/6, whereas [2] provides 2∗nat(n0/2+1/2)∗z2,
where y = nat(n0/2) and z = nat(n0 − 1), which is much less precise.

Our approach can be also applied when nat expressions are increasing or decreas-
ing geometrically, i.e., when nat(li+1) ≤ k ∗ nat(li) for some positive rational k
called common ratio. This is the case in a CR like 〈C(n)=nat(n)+C(n/2), {n ≥
1}〉, which is similar to what we obtain when analyzing the recursive imple-
mentation of merge-sort algorithm (mergesort has two recursive calls). In such
geometric case, the counterpart condition to Def. 4 checks if there exists a min-
imum ratio ǩ such that ϕ2 ∧ ϕ′2 ∧ x̄i = ȳ |= l ≥ ǩ ∗ l′. Then, in a counterpart

definition to Def. 5, we replace such nat(l) ∈ e by nat(l̂) ∗ ǩm−x ∈ Ee where

m = f̂C(x̄0). Intuitively, we accumulate nat(l̂) when x = f̂C(x̄0), and, at each
subsequent step, the expression is geometrically reduced by the ratio. For the
above CR, we obtain a linear UB C(n0) = 2 ∗ nat(n0), whereas techniques de-
scribed in [2, 9] would obtain C(n0) = nat(n0) ∗ log2(nat(n0 + 1)). Note that
here our approach improves even the complexity order. Using a similar con-
struction, for merge-sort (see experiments), we are able to infer the upper bound
63nat(a+ 1)log2(nat(2a− 1) + 1) + 50nat(2a− 1) on the number of executed in-
structions. For conciseness, rest of the paper formalizes the arithmetic case, but
all results are directly applicable to geometric progressions as described above.

4.3 Non-deterministic Non-constant Cost Relations

Any approach for solving CRs that aims at being practical has to consider CRs
with several recursive equations as shown in equation 2. This kind of CRs is
very common during cost analysis and they mainly originate from conditional
statements inside loops.

〈C(x̄) = e0, ϕ0〉
〈C(x̄) = e1 + C(x̄1) + · · ·+ C(x̄k1), ϕ1〉...
〈C(x̄) = eh + C(x̄1) + · · ·+ C(x̄kh), ϕh〉

(2)

For instance, the instruction if (x[i]>0) {A;} else {B;}, may lead to two
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non-deterministic equations which accumulate the costs of A and B. This is
because arrays are typically abstracted to their length and, hence, the guard
x[i]>0 is abstracted to true, i.e., we do not keep this information on the CR.
Thus, ϕ0, . . . , ϕh are not necessarily mutually exclusive. W.l.o.g., we assume
that k1 ≥ · · · ≥ kh, i.e., the first (resp. last) recursive equation has the maxi-
mum (resp. minimum) number of recursive calls among all equations. We also

assume that f̂C(x̄0) = nat(l′) is a global ranking function for this CR, i.e., a
ranking function for all equations.

In non-deterministic CRs, the costs contributed by a chain of recursive calls
might not be instances of the same cost expression, but rather of different ex-
pressions e1, . . . , eh, i.e., the equations might interleave. Namely, we might apply
one equation and for another call another different equation. The worst-case cost
might originate from such interleaving sequences (see [2]). Thus, when inferring
how a given nat(l) ∈ ei changes, we have to consider subsequent instances of
nat(l) which are not necessarily consecutive. For this, we infer an invariant that
holds between two subsequent (not necessarily consecutive) applications of the
same equation, similar to what [2] does, and then we compute the distance ď
between its subsequent instances as in Def. 4 but considering this invariant.

As a first solution, similarly to Def. 5, for each expression ei, we can gen-
erate a corresponding Ei by replacing each nat(l) by nat(l̂−ď∗l′)+x∗ď where
ď is the distance for nat(l). Clearly, if e is a closed-form solution for the RR
PC(x)= max(E1, . . . , Eh)+PC(x−1)+ . . .+PC(x−1) with k1 recursive calls, then

e[x/f̂C(x̄0)] is an UB for C (because in each application we take the worst-case).
Unfortunately, CAS fail to solve RRs which involve (non-constant) max expres-
sions. Therefore, this approach is not practical. Clearly, in the case that one of
e1, . . . , eh is provable to be the maximum, this approach works since we can elim-
inate the max operator. Unfortunately, even comparing simple cost expressions
is difficult and in many cases not feasible [1]. In what follows, we describe a prac-
tical solution to this problem, which is based on finding an expression E which
does not include max and is always larger than or equal to max(E1, . . . , Eh).
This way, we can replace the max by E and still get an UB for C.

First, observe that any cost expression (which does not include max) can be
normalized to the form Σn

i=1Π
mi
j=1bij (i.e., sum of multiplications) where each bij

is a basic element of the following form {r, nat(l), nnat(l), log(nat(l))}. We assume
that all e1, . . . , eh of Eq. 2 are given in this form. For simplicity, we assume that
all expressions have the same number of multiplicands, and all multiplicands have
the same number of basic expressions (if not, we just add 1 in multiplication and
0 for sum). Now since ei is in a normal form, the corresponding Ei will be also
in a corresponding normal form. Given two cost expressions e1 and e2, and their
corresponding E1 and E2, the following definition describes how to generate an
expression E such that it is larger than (or equal to) both E1 and E2.

Definition 6. Given two expressions Ei = a11 · · · a1m1
+ · · ·+ an1 · · · a1mn and

Ej = b11 · · · b1m1
+ · · ·+ bn1 · · · b1mn . We define the generalization of Ei and Ej

as Ei tEj = c11 · · · c1m1
+ · · ·+ cn1 · · · c1mn where cij = bij if we can prove that

bij ≥ aij, cij = aij if we can prove that aij ≥ bij, otherwise cij = aij + bij.
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Although we need to compare expressions when constructing Ei t Ej (namely
bij to aij), this comparison is on the basic elements rather than on the whole
expression and hence it is far simpler. By construction, we guarantee that EitEj
is always greater than or equal to both Ei and Ej . Clearly, the quality of EitEj
(i.e., how tight it is) depends on the ordering of the summands and the elements
of each summand (i.e., multiplicands) in both Ei and Ej . In order to obtain
tighter bounds, we use some heuristics like ordering the elements inside each
multiplication in increasing complexity in such a way that we always try to
compare basic elements of the same complexity order. Besides, we try to compare
basic elements that involve the same variable.

Definition 7. Let C be the CR of Eq. 2, f̂C(x̄0)=nat(l′) its corresponding rank-

ing function, and Ei generated from ei by replacing each nat(l)∈ei by nat(l̂−d ∗
l′)+x∗ď where ď is the distance of nat(l). The corresponding worst-case RR is
〈PC(x) = E1t · · · tEh + PC(x− 1)+ · · ·+PC(x− 1)〉 with k1 recursive calls.

Theorem 3. If E is a solution for PC(x) then E[x/f̂C(x̄0)] is an UB for C(x̄0).

Example 5. Let us add the contrived recursive equation B(j, i, n) = nat(n+15)+
B(j′, i, n)+B(j′′, i, n) {j<i, j′=j+1, j′′=j+2} to the CR B. It has two recursive
calls and a non-deterministic choice for accumulating either e1 = nat(n + j) or
e2 = nat(n+ 15). The function fB(j0, i0, n0) = nat(i0− j0) is a ranking function
for all equations. Next, we compute E1 tE2 where E1 = nat(n0 + i0 − 1− (i0 −
j0)) + x and E2 = nat(n0 + 15− (i0 − j0)) + x. A naive generalization results in
nat(n0 +i0−1−(i0−j0))+nat(n0 +15−(i0−j0))+x, but syntactically analyzing
the expressions and employing the above heuristics, we automatically obtain a
tighter bound nat(n0 +j0 +15)+x. Now we generate 〈PB(x)=nat(n0 +j0 +15)+
x+ PB(x− 1) + PB(x− 1)〉 which can be solved to 〈PB(x)=2x(q + 2)−q−x−2〉
for q = nat(n0 + j0 + 15) and therefore B(j0, i0, n0)=PB(x)[x/nat(i0−j0)].

5 The Dual Problem: Lower Bounds

We now aim at applying the approach from Sec. 4 in order to infer lower bounds,
i.e., under-approximations of the best-case cost. Such LBs are typically useful
in granularity analysis to decide if tasks should be executed in parallel. This
is because the parallel execution of a task incurs various overheads, and there-
fore the LB cost of the task can be useful to decide if it is worth executing it
concurrently as a separate task. Due in part to the difficulty of inferring under-
approximations, a general framework for inferring LBs from CR does not exist.
When trying to adapt the UB framework of [2] to LB, we only obtain trivial
bounds. This is because the minimization of the cost expression accumulated
along the execution is in most cases zero and, hence, by assuming it for all
executions we would obtain a trivial (zero) LB. In our framework, even if the
minimal cost could be zero, since we do not assume it for all iterations, but
rather only for the first one, the resulting LB is non-trivial.
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Existing approaches typically assume that the length of chains of recursive
calls depends on a single decreasing argument. We first propose a new technique
to inferring LBs on the length of such chains, which does not have this restriction.
Essentially, we add a counter to the equations in the CR and infer an invariant
which involves this counter. The invariant is indeed the same one used later to
obtain ľ. The minimum value of this counter when we enter a non-recursive case
is a LB on the length of those chains.

Definition 8. Given the CR of Eq. 2, we compute f̌C(x̄0) = nat(l) which is a
lower bound on the length of any chain of recursive calls when starting from
C(x̄0) in three steps: (1) Replace each head C(x̄) by C(x̄, lb) and each recursive
call C(x̄j) by C(x̄j , lb+1); (2) Infer an invariant 〈C(x̄0, 0) ; C(x̄, lb), Ψ〉 for
the new CR; (3) Syntactically look for lb ≥ l in Ψ ∧ϕ0 (projected on x̄0 and lb).

Example 6. Applying step (1) on the CR B results in 〈B(j, i, n, lb) = 0, {j ≤
i}〉 and 〈B(j, i, n, lb) = nat(n+j)+B(j′, i, n, lb+1), {j<i, j+1≤j′≤j+3}〉. The
invariant Ψ for this CR is {j−j0−lb≥0, j0+3lb−j≥0, i=i0, n=n0}. Projecting
Ψ∧{j≥i} on 〈j0, i0, n0, lb〉 results in {lb≥0, j0+3lb−i0≥0} which implies lb ≥
(i0 − j0)/3. Similarly f̌C(k0, j0, n0)=nat(n0+j0 − k0) and A(i0, n0)=nat(n0−i0

4 ).

We present the approach directly for the non-deterministic CR of Eq. 2. As
in Def. 6, we can reduce the expressions E1, . . . , Eh in order to get an expression
which is guaranteed to be smaller than or equal to min(E1, . . . , Eh).

Definition 9. Given the expressions Ei and Ej in Def. 6, we define their re-
duction as Ei u Ej = c11 · · · c1m1

+ · · · + cn1 · · · c1mn where cij = bij if we can
prove that bij ≤ aij, cij = aij if we can prove that aij ≤ bij, otherwise cij = 0.

The case of cij = 0 can be improved to obtain a tighter LB by relying on heuris-
tics, similarly to what we have discussed in Sec. 4.3. As intuitively explained in
Sec. 3, the main idea is to simulate each nat(l) by a sequence that starts from
nat(ľ) and increases in each iteration by the minimal distance ď.

Definition 10. Let C be the CR of Eq. 2 such that for each nat(l) ∈ ei it
holds that ľ ≥ 0, and let Ei be the expression generated from ei by replacing
each nat(l) by nat(ľ) + (x− 1) ∗ ď. The corresponding best-case RR is 〈PC(x) =
E1 u · · · u Eh + PC(x− 1) + · · ·+ PC(x− 1)〉 with kh recursive calls.

In the above definition, it can be observed that, for the sake of soundness, we
require that for each nat(l) it holds that ľ ≥ 0. Intuitively, when such expres-
sions take negative values, by definition of nat, they evaluate to zero and there
can be a sequence of zeros until the evaluation becomes positive. Our under-
approximation would be unsound in this case, because it assumes as minimum
value zero and then starts to increase it by the minimum distance. Thus, for
some values, the approximation could be actually bigger than the actual value.

Theorem 4. If E is a solution for PC(x), then E[x/f̌C(x̄0)] is a LB for C(x̄0).
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# UBs and LBs T

1
24η(a−1)3+36η(a−1)2+27η(a)2+39η(a)η(a−1)+35η(a−1)+72η(a)+54 1240
8η(a−1)3+27η(a)2+ 99

2 η(a−1)2+ 231
2 η(a−1)+72η(a)+54 1395

8η(a−2)3+46η(a−2)2+105η(a−2)+55η(a−1)+54 204

2
24η(c−1)3+36η(c−1)2+28η(c)2+η(c−1)(40η(c)+35)+25η(c)+48η(b−1)2+46η(b−1)+74 1270
8η(c−1)3+28η(c)2+50η(c−1)2+25η(c)+117η(c−1)+24η(b−1)2+70η(b−1)+74 1425
8η(c−2)3+48η(c−2)2+25η(c−1)+111η(c−2)+24η(b−2)2+70η(b−2)+74 247

3
24η(a−1)3+56η(a)η(a−1)2+27η(a)2+46η(a−1)2+75η(a)+77η(a)η(a−1)+49η(a−1)+62 3617
8η(a−1)3+28η(a)η(a−1)2+27η(a)2+ 109

2 η(a−1)2+75η(a)+66η(a)η(a−1)+ 269
2 η(a−1)+62 3890

18η(a−2)3+81η(a−2)2+75η(a−1)+144η(a−2)+62 415

4
25η(b)η(c)η(c−1)+30η(b)η(c)+16η(b)+6 130
25/2η(b)η(c−b)2+25η(b)2η(c−b)+25/2η(b)3+40η(b)2+135/2η(b)η(c−b)+87/2η(b)+6 200
21/2η(b−1)2+21η(b−1)η(c−b)+53/2η(b−1)+6 60

# UBs and LBs T

5
19η(a−1)2+25η(a−1)+7 44
19/2η(a−1)2+69/2η(a−1)+7 63
18η(a−2)+7 10

7
27η(a−1)2+16η(a−1)+9 103
27/2η(a−1)2+59/2η(a−1)+9 120
13/2η(a−2)2+45/2η(a−2)+9 25

9
34η(a)η(a−1)+12η(a)+8 174
17η(a)2+29η(a)+8 197
8η(a−1)2+20η(a−1)+8 24

# UBs and LBs T

6
43η(a)η(2a−3)+53η(2a−3)+17 2127
63η(a+1)log2(η(2a−1)+1)+50η(2a−1) 2100
0 40

8
16η(a)2+27η(a−1)2+31η(a)+10η(a−1)+25 200
27/2η(a)2+27η(a−1)2+10η(a−1)+67/2η(a)+25 247
5/2η(a−1)2+10η(a−2) + 67/2η(a−1)+25 60

10
2η(a−1)(5η(a−1)+21)+5η(a)−5η(a−1)−7 104
31∗2η(a−1)+5η(a)−5η(a−1)−17 144
31∗2η(a−2)+5η(a− 1)−5η(a−2)−17 34

Table 1: 1. DetEval(a) 2. LinEqSolve(a,b,c) 3. MatrixInv(a) 4. MatrixSort(a,b,c) 5. InsertSort(a)
6. MergeSort(a) 7. SelectSort(a) 8. PascalTriangle(a) 9. BubbleSort(a) 10. NestedRecIter(a).

Example 7. Consider the LBs on iterations of Ex. 6. Since C(k0, j0, n0) accu-
mulates a constant cost 1, its LB cost is nat(n0+j0−k0). We now replace the
call C(0, j, n) in B by its LB nat(n+j) and obtain the equation: B(j, i, n) =
nat(n+j) + B(j′, i, n) {j<i, j+1≤j′≤j+3}. Notice the need of the soundness
requirement in Th. 3, i.e., ˇnat(n+j)≥0. E.g., when evaluating B(−5, 5, 0) the first
4 instances of nat(n+ j) are zero since they correspond to nat(−5), . . . , nat(−1).
Therefore, it would be incorrect to start accumulating from 0 with a difference
1 at each iteration. After solving A and B in the same way, the computed final
LB for F (n) is: 1

3nat(n)nat(n4−1)+ 1
18nat(

n
4−1)nat(n4−1)+ 1

6nat(
n
4−1).

6 Experiments and Conclusions

We have implemented our approach in COSTA, a COSt and Termination An-
alyzer for Java bytecode. The obtained RRs are solved using MAXIMA [12] or
PURRS [4]. As benchmarks, we use classical examples from complexity analysis
and numerical methods: DetEval evaluates the determinant of a matrix; LinEq-
Solve solves a set of linear equations; MatrixInverse computes the inverse of an
input matrix; MatrixSort sorts the rows in the upper triangle of a matrix; In-
sertSort, SelectSort, BubbleSort, and MergeSort implement sorting algorithms;
PascalTriangle computes and prints Pascal’s Triangle; NestedRecIter is an inter-
esting programming pattern we found in the Java libraries with a spacial form
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of nested loops that uses recursion and a simple iteration for loop. Our imple-
mentation (and examples) can be tried out at http://costa.ls.fi.upm.es by
enabling the option series in the manual configuration.

Table 1 illustrates the accuracy and efficiency on the above benchmarks us-
ing the cost model “number of executed (bytecode) instructions”. We abbreviate
nat(x) as η(x). The second column shows: in the top row the UB obtained by [2],
next the UB obtained by us and at the bottom our LB. Unfortunately, there are
no other cost analysis tools for imperative languages available to compare exper-
imentally to (e.g., SPEED [9]). As regards UBs, we improve the precision over [2]
in all benchmarks. This improvement, in all benchmarks except MergeSort and
NestedRecIter, is due to nested loops were the inner loops bounds depend on the
outer loops counters. In these cases, we accurately bound the cost of each itera-
tion of the inner loops, rather than assuming the worst-case cost. For MergeSort,
we obtain a tight bound in the order of a∗log(a). Note that [2] could obtain
a∗log(a) only for simple cost models that count the visits to a specific program
point but not for number of instructions, while ours works with any cost model.
For NestedRecIter, we improve the complexity order over [2] from a∗2a to 2a. As
regards LBs, it can be observed from the last row of each benchmark that we
have been able to prove the positive nat condition and obtain non-trivial LBs in
all cases except MergeSort. For MergeSort, the lower bound on loop iterations is a
logarithmic which cannot be inferred by our linear invariant generation tool and
hence we get trivial bound 0. Note that for InsertSort we infer a linear LB which
happens when the array is sorted. Column T shows the time (in milliseconds)
to compute the bounds from the generated CR. Our approach is slightly slower
than [2] mainly due to the overhead of connecting COSTA to the external CAS .

7 Conclusions

When comparing our approach (for UBs) to [9], since the underlying cost analysis
framework is fundamentally different from ours, it is not possible to formally
compare the resulting upper bounds in all cases. However, by looking at small
examples, we can see why our approach can be more precise. For instance, in [9]
the worst-case time usage

∑n
i=1 i is over-approximated by n2, while our series-

based approach is able to obtain the precise solution. For such polynomial cases,
the approach of [10] can compute also the exact solution. However, this approach
is restricted to univariate polynomial bounds, while ours can be applied to obtain
general polynomial, exponential and logarithmic bounds as well.

Finally, to conclude, we have proposed a novel approach to infer precise up-
per/lower bounds of CRs which, as our experiments show, achieves a very good
balance between the accuracy of our analysis and its applicability. The main
idea is to automatically transform CRs into a simple form of worst-case/best-
case RRs that CAS can accurately solve to obtain upper/lower bounds on the
resource consumption. The required transformation is far from trivial since it
requires transforming non-deterministic equations involving multiple increas-
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ing/decreasing arguments into deterministic equations with a single decreasing
argument.
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