
Resource-Usage-Aware Configuration
in Software Product Lines

Damiano Zanardinia, Elvira Albertb, Karina Villelac

aTechnical University of Madrid, Spain
bComplutense University of Madrid, Spain
cFraunhofer IESE Kaiserslautern, Germany

Abstract

Deriving concrete products from a product-line infrastructure requires resolving
the variability captured in the product line, based on the company market strat-
egy or requirements from specific customers. Selecting the most appropriate set
of features for a product is a complex task, especially if quality requirements
have to be considered. Resource-usage-aware configuration aims at providing
awareness of resource-usage properties of artifacts throughout the configuration
process. This article envisages several strategies for resource-usage-aware con-
figuration which feature different performance and efficiency trade-offs. The
common idea in all strategies is the use of resource-usage estimates obtained by
an off-the-shelf static resource-usage analyzer as a heuristic for choosing among
different candidate configurations. We report on a prototype implementation of
the most practical strategies for resource-usage-aware configuration and apply
it on an industrial case study.

1. Introduction

One increasing trend in the market of Software Engineering is the need to
develop multiple, similar software products instead of just a single individual
product. Software Product-Line Engineering (SPLE) [41] offers a solution to
this trend based on explicitly modeling what is common and what differs among
product variants, and on building a reuse infrastructure, a so-called product-
line infrastructure, that can be instantiated and possibly extended to build the
desired similar software artifacts (the products).

Deriving concrete products from a product-line infrastructure requires re-
solving the variability captured in the product line according to a company’s
market strategy or the requirements from specific customers. Feature mod-
els [35, 21] have been the main approach for capturing the commonality and
variability in product lines. The process of product configuration usually consists
in selecting those features that are applicable to the desired product, so that this
product can be assembled from the product-line assets. One of the most difficult
tasks is the translation of market or customer requirements and goals into the

Preprint submitted to Elsevier October 7, 2016

Table 1: Support for Feature Selection

Main Support NF Underlying
Characteristic Type Concerns Technology
Multi-level
staged [22]

Interactive Security Specialized FMs

Probabilistic [23] Interactive No Conditional probabilities
and legal Joint Probability
Distributions

Dynamic [39] Automatic No Binding analysis and recon-
figuration strategy

Multi-step
[57, 58]

Automatic Cost Constraint Satisfaction
Problem

Polynomial-time
[56]

Automatic Yes Multi-dimensional Multi-
choice
Knapsack Problem

Fast selection
time [28]

Automatic Yes Genetic algorithm (repair
operator and penalty func-
tion)

Business concern
annotation [51]

Automatic Yes Hierarchical Task Network

Multi-view [31, 1,
32]

Interactive No Workflow management tool

Feature-wise
and variant-wise
properties [47]

Mostly
Auto-
matic

Yes Constraint Satisfaction
Problem

Domain experts’
judgment [59]

Interactive Yes Analytic Hierarchical Pro-
cess

concrete set of features that best match them. Several aspects affect feature
selection for a certain product: dependencies and constraints among features,
the desired degree of product quality, and economic cost. Moreover, different
stakeholders are capable of selecting external (visible to the customers and/or
marketing people) and internal features (necessary to realize external features,
but not visible). In product lines with a large number of features, which are very
common in practice, feature selection becomes an increasingly difficult task, and
may result in invalid, inappropriate or inefficient configurations.

Several authors have contributed to the research on feature selection (Ta-
ble 1). We have analyzed the proposed approaches in terms of the type of
support (either interactive or automatic), the non-functional concerns that are
taken into consideration, and the underlying problem-solving technology.

Concerning Support Type, interactive product configuration uses the rules
provided by the feature model to propagate configuration choices made by the
user [23], whereas automatic product configuration provides a set of configura-
tions that satisfy the rules and the user’s requirements and constraints. The

2

selection of features in our resource-usage-aware configurator is mainly autom-
atized. However, the user has a central role providing not only information on
concerns (e.g., memory consumption) and constraints (e.g., that the cost has to
be lower than x), but also on the key features of the product. Key features are
those features which are required by the customer as a crucial part of the desired
products, similarly to user-selected features included in the input partial config-
urations of the tool implemented by Sincero et al. [48]. If their presence does not
infringe any rule, then the configurator will not propose deselecting them in any
of the provided solutions. On the one hand, this information is essential for the
efficiency and effectiveness of a product configurator. On the other hand, it pro-
vides an interesting balance between automatic and interactive configurations.
Tun et al. [53] proposed an approach to systematically relate requirements to
features that uses three separate feature models (requirements, world context
and specifications) and respective links between them. Our approach addresses
this issue by asking the user for key features and quality concerns (requirements
and world context), and proposing configurations (specifications) that include
such key features and optimize the quality concerns.

As regards Non-Functional Concerns, several approaches take into consid-
eration cost constraints, but only few of them consider quality concerns [22,
56, 51, 28, 47] as we do. There are two crucial aspects in this context: (1)
quality-aware configurations require modeling quality variability; and (2) it is
necessary to provide support or guidance on how to obtain quality indicators.
Etxeberria et al. [24] presented a survey on existing approaches for specifying
variability in quality attributes. The six approaches (Goal-based model [26],
F-SIG [33], COVAMOF [14], Extended Feature Model [12], Definition Hierar-
chy [38], and Bayesian Belief Network [60]) are compared according to the re-
quirements defined by the authors for a quality-variability modeling approach.
Our resource-usage-aware configurator adopts the Extended Feature Model ap-
proach, because this approach does not require the learning of additional/new
notations by practitioners, which will promote the adoption of our approach in
practice.

Regarding the third aspect used to compare the approaches in Table 1,
namely, the Underlying Technology, our case study was built upon the CSP
(Constraint-Satisfaction-Problem) solver called Choco Java, because: (1) the
mapping of the product-configuration problem into CSP [58] is intuitive; and
(2) there are translators from CSP into Satisfiability Modulo Theories (SMT),
which can be adopted to address quality issues of the underlying technology,
if required. However, any other underlying technology capable of dealing with
quality annotation of features (e.g., the one used by Soltani et al. [51]) could
have been used, which includes visualization and exploration techniques such as
the ones proposed in [40].

This paper focuses on obtaining quality indicators of performance for fea-
tures and/or product configurations that can be used to guide product con-
figuration. Performance (a.k.a. resource consumption or resource usage) is a
frequently desired quality for software artifacts. In our implementation and
case study, the quality metrics we use to estimate the degree of performance

3

of a product are either the amount of allocated memory (memory consump-
tion) or the number of executed instructions. It is important to point out from
the beginning that, unlike related work, the presented techniques rely on static
resource-usage analysis, i.e., quality indicators are obtained without actually
executing the code and refer to all possible inputs (not just to a few specific
workloads, as in existing approaches).

We discuss and compare four strategies for resource-usage-aware configu-
ration of software product lines. Many ideas behind such strategies are well-
known; one of them is actually infeasible and is only presented in order to start
the discussion. However, all these strategies are applied with static analysis in
mind, which is something not discussed in existing works. The common idea
in all strategies is the use of resource-usage estimates as a heuristic for guid-
ing the automatic selection of features. The crux is the use of an automated
static resource-usage analyzer (e.g., [27, 30, 6]) providing estimates of the re-
source consumption of software artifacts. Such estimates are used to guide the
configuration process towards more efficient products, while keeping all key fea-
tures (as they are essential from the user’s point of view), and also adhering to
user constraints and to the dependencies and constraints specified in the feature
model.

1.1. Summary of Contributions

Our main contribution is the notion of resource-usage-aware configuration
that relies on the rigorous formal technique of automated static resource-usage
analysis in order to assist configuration. This overall contribution breaks down
in different strategies that realize such a notion of resource-usage-aware con-
figuration, a prototypical implementation of the most practical strategy, and a
preliminary experimental evaluation.

• We first discuss a strategy for Product-Based Analysis, in which the re-
source consumption of (selected) products is estimated after product con-
figuration, i.e., resource-usage analysis is run a posteriori on (selected)
product configurations. This strategy (generate all products and analyze
each of them) is well-known in principle; obviously, it is not scalable at all,
and cannot be used in practice. However, it is useful as a starting point.

• We then discuss a strategy for Partial-Product Analysis, in which the
resource-usage analyzer is invoked on partial products obtained after the
selection of features along the configuration process. In this context there
is an interwoven interaction between configuration and resource-usage
analysis. This strategy is new; however, it is not scalable unless some
clever way to analyze incomplete code, perform incremental static analy-
sis and prune the tree of partial configurations is found.

• The third proposed strategy is Feature-Based Analysis, where the resource-
usage analyzer is run a priori to estimate the impact that each feature
may have on the resource consumption of products. This is achieved by (1)

4

generating minimal products, one for each feature, which include that same
feature and the minimal set of features needed to get a valid configuration;
and (2) analyzing them one by one taking into account the portion of
code which is affected by the selection of the feature under study. This
strategy is similar to Siegmund et al. [45, 46, 47] as regards the definition
of minimal products. However, there are a number of relevant differences:
(1) it is applied to static-analysis results instead of the execution on a
specific workload, which makes things much more delicate; (2) possibly
(Section 4.2), only a small part of the code is analyzed; and (3) the way
minimal products are studied is not the same: no comparison between a
product with a given feature and the same product without that same
feature is made; instead, resource-usage annotations are built (see below)
from statically analyzing relevant portions of the code.

• In Feature-Based Analysis with Interactions, we enrich the previous feature-
based analysis (which considers the resource contributed by each feature
in isolation) with resource-usage information gathered from the interac-
tion of features. In order to detect which features may interact, we can
perform a pre-process to identify interactions that affect performance.

• We report on a prototype implementation of a feature-based analysis
(third strategy) which uses the SACO static resource-usage analyzer [6, 5]
to infer resource-usage estimates, and annotates features with resource-
usage annotations which are then used by the configurator to suggest a
valid product configuration that best fits the quality constraints provided
by the user. The whole process of resource-usage-aware configuration is
fully automatic.

• We have applied our implementation to an industrial case study that pro-
vides search and merchandising services. While product-based analysis of
our case study requires the analysis of 768 products to obtain resource-
usage annotations, we will see that feature-based analysis only needs to
generate and analyze 13 products. Our experiments show that it is feasi-
ble to infer resource-usage annotations for all optional features in a fairly
efficient way. Annotations are then used by the product configurator to
configure a product that meets the user’s constraints on performance.

Let us emphasize that, from the point of view of the static analysis com-
ponent, most of the general principles behind the four strategies date back to
early work on static analysis (see [19] and its references). In particular, the
first strategy for product-based analysis corresponds to the original analysis (or
whole-program analysis) [18]. The second one is based on principles of incre-
mental static analysis [29, 9]. The last two ones are related to modular static
analysis [17].

As already pointed out, there is related work in the area of obtaining indi-
cators of performance for features and/or product configurations that can be
used to guide product configuration [37, 48, 45, 46, 47]. However, as far as

5

we know, there are no other approaches to resource-usage-aware configuration
that use automated static resource-usage analysis to assist configuration. For
example, Siegmund et al. [45, 46, 47] do not use static analysis; instead, the ex-
ecution of software artifacts for specific workloads is performed. All in all, what
is unique in our work is that we base our strategies in a very complex property
obtained by the rigorous formal technique of automated resource-usage analy-
sis. The complexity (and uncomputability) of the property under study is clear
since the inference of resource guarantees implies proving termination, which is
considered as a difficult property by itself to infer. What is discussed in each
strategy, and constitutes part of our original contribution, is how the resource-
usage guarantees are obtained, and what are the advantages and disadvantages
of each setting.

1.2. Organization of the Article

The rest of the article is organized as follows. Section 2 provides an overview
of the SPLE paradigm in the context of a case study used in this article for
discussion. Section 3 outlines some essential notions of product configuration
which later are needed to present our resource-usage-aware strategies.

Section 4 overviews the main notions of static resource-usage analysis. In
the article, we use an out-of-the-box resource-usage analyzer that does not need
to be changed to our needs. The section thus focuses on describing the different
parameters that the analysis often has, as well as the output of the analysis
process. This background knowledge will be useful to understand the strategies.

Section 5 introduces the four strategies for resource-usage-aware configura-
tion, and points out the advantages and disadvantages of each of them.

Section 6 reports on a prototype implementation of the feature-based analy-
sis (the third strategy) introduced in Section 5), whereas Section 7 describes our
experiments on an industrial case study. Section 8 discusses threats to internal
and external validity of our approach.

Finally, Section 9 reviews related work and Section 10 concludes the article.
The present work continues the line of work started by mostly the same

authors in a previous publication [55].

2. SPLE on a Case Study

SPLE is a software-development paradigm characterized by two main pro-
cesses: (1) Family Engineering, where product-line assets that are part of the
product-line infrastructure are created; and (2) Application Engineering, where
these assets are reused to create specific products according to customer re-
quirements [41]. The process of Application Engineering becomes a Product-
Derivation process when it is mainly concerned with the configuration of a
product and its automatic derivation from the product-line assets.

For the sake of concreteness, this section presents excerpts of product-line
assets from an industrial case study that has been developed using the ABS tool

6

suite1. However, the ideas developed in this article are also applicable to other
feature-oriented SPLE formalisms.

2.1. Case Study

The Fredhopper Access Server (FAS) is a distributed and concurrent sys-
tem that provides search and merchandising services to e-Commerce compa-
nies. Briefly, FAS provides to its clients structured search capabilities within
the client data. FAS is structured as a set of live and staging environments.
A live environment processes queries from client web applications via web ser-
vices, with the aim of providing a constant query capacity to client-side web
applications. A staging environment receives data updates in XML format, in-
dexes the XML, and distributes the resulting indices across all live environments
according to the replication protocol implemented by the Replication System.
The Replication System consists of a SyncServer at the staging environment,
and one SyncClient for each live environment. The SyncServer determines the
schedule of replication, as well as its contents, while every SyncClient receives
data and configuration updates. There are several variants of the Replication
System that were developed as a software product line; one of them is used as a
running example in this article (the source code of the case study can be found
in the ABS website).

2.2. Feature Models

A feature model [35, 21, 42] represents a hierarchy of features, which are
properties of domain concepts relevant to some domain stakeholder and used
to discriminate between concept instances. Table 2 summarizes the general
concepts in feature models. The hierarchy of features is organized as a tree: it
starts from a root feature, which has a group of sub-features. An “AND”, “OR”,
or “XOR” (alternative, exclusive “OR”) relation can hold between features in
the same group2. In an “OR” group, it is also possible to set a minimum
and maximum number (n1 and n2 in Table 2, where ∗ means “unlimited”)
of features that have to be present in any product. A feature can be either
mandatory, if it is common to all possible instances, or non-mandatory, if it is
marked as optional (opt in Table 2) or belongs to an “OR” or a “XOR” group.
In addition to the hierarchical relations, cross-tree relations control the selection
of non-mandatory features: If a feature f1 is selected and there is a relation “f1
requires f2”, then f2 has to be selected too. In contrast, if f1 is selected and
there is a relation “f1 excludes f2”, then f2 has to be deselected.

The Micro Textual Variability Language (µTVL) [15] is a text-based feature
modeling language that extends a subset of TVL [16]. Table 2 shows its main
constructs. A feature model is represented textually as a tree3 of nested features,

1ABS (Abstract Behavioral Specification) website: http://www.abs-models.com
2In other approaches, an “AND” group can be simply a set of mandatory of optional (but

not alternative) features with the same parent node in the feature tree.
3Actually, a feature model can be represented in µTVL as a forest where the roots of all

trees are considered to be related by “AND”.

7

http://www.abs-models.com

Table 2: Main µTVL Constructs

Relation µTVL Construct

AND group allof

OR group [n1..∗], group [n1..n2]

XOR group oneof

Cross-tree require, exclude, ifout

and logical operators !, ||, &&, → and ↔

each with an optional collection of boolean or integer attributes. Additional
cross-tree relations can also be expressed.

root ReplicationSystem {

group allof {

Installation { group oneof { Site, Cloud } },

Resources {

group allof {

opt Client{ Int c in [1..30]; Site -> c<=10; },

opt Server{ Int c in [1..30]; Site -> c<=10; }

} },

JobProcessing {

group oneof { Seq, Concur{require: Cloud;} } },

ReplicationItem {

group allof { Dir, opt File, opt Journal } },

Load { group allof { /∗ more features ∗/ }}

} }

Listing 1: µTVL model of the Replication System

Listing 1 shows an excerpt of the µTVL feature model for FAS. The Repli-
cation System has mandatory features (e.g., ReplicationSystem, Installation,
Dir), plus a number of optional features. Site and Cloud are alternative features,
as well as Seq and Concur. The selection of Concur requires that Cloud is also
selected. Some features like Client have an integer parameter c whose value
must be between 1 and 30; moreover, c cannot be greater than 10 whenever
Site is selected.

2.3. Feature Implementations

Feature implementations specify at the level of source code how each feature
contributes to the behavior of the final product. Several approaches have been
used to this end, such as aspect-oriented [36], feature-oriented [11], and delta-
oriented programming [44]. This paper refers to delta-oriented programming,
and the Replication System has also been implemented using this technique;
however, most aspects of the discussion are amenable to other approaches. For
example, the global approach to static analysis (Section 4.1) analyzes whole
products, so that it does not depend on how they are generated. On the other
hand, the local approach (Section 4.2) does depend on how variability is imple-

8

mented, but the analysis of code in delta modules is not conceptually different
from analyzing code in feature modules.

The features of the Replication System have been implemented using delta-
oriented programming. The implementation of a software product line in delta-
oriented programming is divided into a core model and a set of delta modules (or
deltas). The (possibly empty) core model consists of the classes that implement
a complete product of the product line, while deltas describe how to change
the core model to obtain new products. The choice of which deltas have to be
activated (i.e., applied to the source code) is based on the selection of desired
features for the final product. The Delta Modeling Language (DML) [15] is used
to define deltas, and provides constructs for specifying how the delta modifies
the source code, such as adds, removes or modifies, which can refer to classes,
interfaces, methods, etc. For instance, a delta can add a new class, providing its
complete declaration, or modify one by specifying which methods or attributes
have to be added, removed or modified. Listing 2 shows an excerpt from a delta
module of the Replication System in which, among other things, a new class
ReplicationSystem is added and the class ReplicationSystemMain is modified.
The language in which the modules are programmed is ABS [34], a language
which has been recently defined for developing distributed concurrent systems.
The sequential part of the language is similar to Java, but it also includes a
functional sub-language to define data types. The concurrent sub-language is
based on the actor concurrency model [2].

delta ReplicationSystemDelta;

adds data JobType = Replication | Boot;

adds type ClientId = Int;

adds class ReplicationSystem(

[Final] Int maxUpdates, ... ,

SyncServer getSyncServer() { ... }

SyncClient getSyncClient(ClientId id) { ... }

Unit run() { ... }

}

modifies class ReplicationSystemMain {

adds Unit run() {

List<Schedule> schedules=this.getSchedules();

Set<ClientId> cids = this.getCids();

Int maxJobs = this.getMaxJobs();

Int maxUpdates = this.getMaxUpdates();

new cog ReplicationSystem(

maxUpdates,schedules,maxJobs,cids); }

}

Listing 2: A delta module of the Replication System

2.4. Linking Feature Models to Feature Implementations

A feature-oriented product-line infrastructure is composed, at least, of a fea-
ture model and the code that implements the features in it. The Product-Line
Configuration Language (CL) [15] links feature models specified in µTVL with

9

deltas in order to provide a specification of the variability in a product line. A
product-line configuration consists of a set of features assumed to exist, and a
set of delta clauses. Each delta clause specifies a delta and the conditions for its
application, called application conditions. These conditions contain (1) propo-
sitional formulas over the set of known features and attributes (when clauses),
and (2) a partial ordering on deltas (after clauses, shown in the listing below)
which specifies the order in which deltas have to be applied when some feature
is selected. When the condition holds for a given product, the delta is said to
be active. The partial ordering indicates which deltas, when active, should be
applied before the considered delta. Listing 3 provides an excerpt of the CL
specification of our product line.

productline PL;

features ReplicationSystem, Resources, ... , Data;

delta ReplicationSystemDelta when ReplicationSystem;

delta ResourcesDelta

after ReplicationSystemDelta when Resources;

delta ClientDelta(Client.c)

after ResourcesDelta when Client;

delta DataClientNrDelta after ClientNrDelta,DataDelta

when Data && ClientNr;

Listing 3: CL specification of the Replication System

2.5. Product Specifications

Product specifications are used to define the products of a product line by
stating which features should be included in each of them and setting the feature
attributes when needed. This provides traceability and supports automatic
derivation of products from the product-line infrastructure. Listing 4 shows
two products from the product line of the Replication System using the Product
Selection Language (PSL) [15].

product DefaultProduct(

ReplicationSystem, Installation, Resources,

JobProcessing, ReplicationItem, Dir, Load, Schedule,

// non−mandatory features
Site, Seq);

product TwoClients(

ReplicationSystem, Installation, Resources,

JobProcessing, ReplicationItem, Dir, Load, Schedule,

// non−mandatory features
Site, Seq, File, Journal, ClientNr{c=2,j=5},

Update{u=3}, Search{d=10,l=20}, Business{d=10,l=20});

Listing 4: Two products in the product line

10

FM

S D

CM

P

error

validity check delta activation delta application
yes

no

Figure 1: The whole process of product generation

2.6. Product Generation

After having introduced all previous steps, we can define product generation
(Figure 1). Given a feature model FM , a core model CM , a set of deltas D, a
product-line configuration C , and a product specification S, the following steps
are systematically performed to build the final software product: (1) Check the
product specification S against FM for validity in order to assure that the set
of features in S obey the relations provided by FM ; (2) use C to activate the
deltas from D with valid application conditions according to S; (3) apply the
active deltas to the core model CM in the prescribed order. Applying all active
deltas yields the final product P .

3. Product Configuration

It is not the purpose of this article to formalize product configuration; rather,
this section just introduces the basic notions needed to accurately describe the
strategies for resource-aware configuration in SPLE.

3.1. Definition

Given a product-line PL with a feature model FM , product configuration
is the process of selecting those features that comply with FM and fulfill the
stakeholders’ requirements, which results in the product specification S.

The solution provided by the configurator is a set of candidate configurations
C1 . . . Cn, where each Ci is defined as a set of features {f1, . . . , fm} (optionally
providing initial values for attributes). All configurations include the set of
mandatory features, and must be valid with respect to the feature model.

Example 3.1. Listing 4 shows two candidate configurations for FAS, which, in
the above notation, are represented as:

C1 =

{
ReplicationSystem, Installation, Resources, JobProcessing,

ReplicationItem, Dir, Load, Schedule, Site, Seq

}

C2 =

ReplicationSystem, Installation, Resources, JobProcessing,

ReplicationItem, Dir, Load, Schedule, Site, Seq, File,
Journal, ClientNr{c=2,j=5}, Update{u=3},
Search{d=10,l=20}, Business{d=10,l=20}

11

Observe that in C2 we provide initial values for the attributes of certain features.

For each candidate configuration Ci, the unique associated product Pi denoted
as P(Ci) in the following can be automatically derived from the product-line
infrastructure (Section 2.6) by taking S to be equal to Ci.

Example 3.2. Consider the configuration C1 in Example 3.1; a product can
be generated from it by following the CL specification in Listing 3 and applying
to the core module the deltas in Listing 2. The result is a program written in
the ABS language (i.e., the same language as the deltas in Listing 2) where, as
it can be seen by inspecting the delta code, the class ReplicationSystemMain is
modified by adding a method Unit run().

3.2. Configuration Trees

In order to define the strategies for resource-aware configuration, it is useful
to view the configuration process as the construction of a decision tree, referred
to as the configuration tree τ , whose nodes represent partial configurations. A
partial configuration C = {f1, . . . , fn} is a set of features corresponding to a
valid product, or a subset of it. Each node is labeled by a partial configura-
tion which is a superset of partial configurations labeling ancestor nodes. Thus,
traversing a path C ; C ′ in the tree corresponds to adding features progres-
sively, until a valid product is possibly obtained in C ′. The edge from a node
C to its direct child C ′ represents a minimal increase in the size of the feature
set: more than one feature can be added in a single step because of cross-tree
relations in the feature model: e.g., it might be the case that one cannot select
fn+1 without selecting fn+2, . . . , fm. Nodes can have several children; e.g., both
C ′ and C ′′ may be children of C when we choose among optional or alternative
features; this may happen if C ′ has an optional feature that C ′′ does not add,
or C ′ adds the feature f ′ to C while C ′′ adds the feature f ′′, and f ′ and f ′′ are
alternative. The root of the tree is labeled by the set of mandatory features.

Example 3.3. The picture below shows a small portion of the configuration
tree for the case study:

ReplicationSystem

Installation

Resources

JobProcessing

ReplicationItem

Dir

Load

Schedule

Site

Business

File

Search

where, for each node, only new features (i.e., features which were not selected in
ancestor nodes) are represented. Note that File is required by Business, so that
there can be no node only containing Business. Note also that no feature set in
this part of the tree is a valid product, because neither Seq nor Concur have been
selected so far; however, all feature sets are subsets of valid configurations.

12

Given the product-line infrastructure PL, we rely on two tools coping with the
variability in the feature model:

• A generic configurator invoked as Configurator(PL) is able to generate all
valid configurations, relying on the feature model.

• A partial configurator TreeBuilder(PL,) progressively computes a config-
uration tree τ as described above. The computation is progressive since,
in general, there is no need to compute the whole τ . Instead, the tree can
be built as specified in Section 5.2.

In the following, ValidConf denotes the set of valid configurations, and PartConf
denotes the nodes of a configuration tree (i.e., the set of configurations, either
partial or complete).

Example 3.4. For the case study, Configurator finds 768 valid configurations,
i.e., ValidConf contains 768 products. This number comes from observing that
Site and Cloud are alternative, as well as Seq and Concur, but the latter re-
quires Cloud, so that each product selects one of the following three features
sets: {Site, Seq}, {Cloud, Seq}, and {Cloud, Concur}. Moreover, there are nine
optional features, thus originating 512 possibilities for each of the three selec-
tions above. The final number n is 768 instead of 1536 = 3 · 512 because of
constraint in the feature model: of the 16 combinations derived by the selection
of Business, Data, File, and Journal, only 8 represent valid products, so that
n = 1536 · 8/16 = 768.

Example 3.5. The configuration tree for our case study has several millions of
nodes4 To understand where the number of nodes comes from, consider a much
smaller example of a feature tree:

root F1 {

group allof {

F2 { group oneof { F4, F5 } },

F3 { group allof { opt F6, opt F7 { require: F4; } } } } }

In this case, there are 3 mandatory features (F1, F2, and F3), two optional
features (F6 and F7) with cross-tree relations, and an alternative group (F4 and
F5). The resulting configuration tree has 15 nodes:

F1 F2 F3

F4 F5 F6 F7 F4

F6 F7 F6 F4 F5 F7 F4 F6

F7 F6 F7

4Exactly, 491882570. This number has been obtained by using a Prolog program which
simulates the generation of all possible partial configurations, and counts them.

13

4. Static Resource-usage Analysis

In our approach to resource-aware configuration, resource-consumption esti-
mates are computed by an off-the-shelf resource analyzer and used to select the
most promising configuration candidate(s). Two approaches to static resource-
usage analysis will be part of the following discussion.

• The first, global approach considers a product as a whole and tries to infer
information about complete executions.

• The second, local approach only considers some relevant parts of the code
(below, the footprint) in isolation, based on the features under study.

4.1. The global approach

The global analysis of a program relies on a generic resource-analysis tool
Analyzer , which, given a code fragment P , an entry method entry , and a re-
source metric of interest R, is invoked as Analyzer(P, entry , R) and analyzes the
resource consumption of entry , as well as those n methods transitively invoked
from it, w.r.t. R. As a result, it returns an upper bound u to the resource con-
sumption of entry . The existence of a global entry method that corresponds to
the main method is assumed, so that u describes the resource usage of executing
a product as a whole. The upper bound is a sound worst-case approximation
of the actual cost: it is guaranteed that no execution of entry (for any possi-
ble input data) can consume more than u resource units. Importantly, this is
in contrast with the results obtained by dynamic performance analysis, which
studies the resource consumed by a particular execution on a given set of input
data. Thus, static resource analysis ensures sound bounds in a system when only
one execution in a million can lead to a high resource consumption, while this
anomalous case would be probably missed by dynamic analysis. To compute an
upper bound for the entry method implies, in general, producing upper bounds
for every method possibly invoked by entry ; the following example refers to one
of such intermediate upper bounds.

Example 4.1. Consider a fragment of method Unit transferItems(Set<File>

fileset) showed in Listing 5, which is part of the FAS case study. This method
has been pointed out in previous work [13] as a hot spot in the execution time
of the case study. This method traverses the set of files that receives as input
parameter, and performs a number of operations on each element of the set. It
is not relevant for our purposes to understand the behavior of the method, which
includes also primitives for concurrency (like future variables, await operations
and asynchronous calls) that are completely outside the focus of this work. The
important point is the external while loop which traverses the set of files (pa-
rameter fileset) using an iterator and, at each loop iteration, invokes some
auxiliary operations that will consume additional resources.

Let us analyze its resource consumption using the SACO tool [6], an imple-
mentation of Analyzer for ABS programs. We select the cost model that counts

14

the number of steps, since this is the metric which is most related to execution
time. SACO returns the following asymptotic upper bound:

size(fileset) ∗ size(rdir)2 + size(fileset)3 ∗ size(rdir)

which is a polynomial of degree 4 on the size of the argument fileset and the
class field rdir.

Unit transferItems(Set<File> fileset) {

while (hasNext(fileset)) {

Pair<Set<File>,File> nf = next(fileset);

fileset = fst(nf);

File file = snd(nf);

FileSize tsize = fileContent(file);

Fut<Unit> rp = job!command(AppendSearchFile); await rp?;

Fut<Maybe<FileSize>> fs = job!processFile(fst(file));

await fs?;

Maybe<FileSize> content = fs.get;

FileSize size = 0;

if (isJust(content)) {

size = fromJust(content);

}

if (size > tsize) {

rp = job!command(OverwriteFile);

await rp?;

rp = job!processContent(file);

await rp?;

} else {

// omitted a fragment of the method
}

Listing 5: Excerpt of method transferItems of case study

The aspects of static resource analysis which are relevant to our study are
the following:

1. Upper bounds are cost expressions that might include polynomial, loga-
rithmic, exponential subexpressions (and any combination of them).

2. For simplicity, in the example the result of SACO was shown in asymp-
totic form (or “big-O” notation), i.e., all constants have been removed as
the expression was rather large and difficult to read. In general, the re-
sult provided by the analyzer is a precise upper bound that also includes
constants.

3. The upper bound is given in terms of the size of the input parameters
(e.g., size(fileset)) and of the class fields (e.g., size(rdir)). This is the
case for the upper bound of most methods whose resource usage is not
constant.

4. In order to compare the resource usage of two fragments of code, we need
to be able to compare upper bound expressions of the above form. This
problem has been studied in previous work[7]; therefore, the existence of
an operator “<” which allows comparing two upper bounds is assumed.

15

5. The upper bound is ensured to be correct, i.e., it is a safe approximation
of the worst-case resource consumption of running the program for any
possible input data.

4.2. The local approach

In some of the strategies described in Section 5, it makes sense not to consider
a program as a single piece of code to be executed from its entry method. This
happens because (1) the code is actually incomplete, as when not all features
leading to a valid configuration have been selected yet (Section 5.2); or (2) the
focus is on the specific impact of a single feature on resource-usage behavior
(Section 5.3).

On one hand, if the program code is incomplete, then analyzing the entire
code is, in general, not possible because of inconsistencies in the code itself.
On the other hand, the strategy presented in Section 5.3 only focuses on the
part of the code which is in the product just because a certain feature have
been selected: the feature footprint (defined below). In both cases, methods
(either all currently available methods, as in the case of incomplete code, or
the footprint of some feature, as in the case of feature-focused analyses) can
be extracted from the domain artifacts (the core code or the delta modules)
and analyzed separately by a call Analyzer(PL,m,R)5 to the analyzer for each
method m under study. However, it is important to point out that, although
each method m is analyzed separately, other methods invoked by m are also
considered in the result.

Not surprisingly, the local approach to static resource-usage analysis is not
able to provide a sound, global upper bound to resource consumption. Instead,
the result of the analysis is a set of resource-usage annotations, one for each
method under study. Such annotations have to be transformed and combined
into a useful piece of information (see below). For example, the implementation
described in Section 6 does the following:

• It statically analyzes all methods in the footprint of the feature under
study, obtaining a resource-usage upper bound for each of them (taking
other invoked methods into account).

• It transforms each upper bound into a numeric resource-usage annotation,
based on asymptotic complexity: exponential upper bounds are assigned
a higher number than linear or constant ones.

• It combines annotations by arithmetic mean into a measure of the resource-
usage of the part of the code under study.

5The use of PL instead of P as the first argument of the call means that the code of m
and the methods it invokes is extracted from the domain artifacts, not an individual product.

16

Computing footprints. The notion of the footprint of a feature f has to be
defined: the goal is to identify the parts of the code whose presence in the final
product depends on the selection of f . This is done by collecting all the deltas6

δ1..δn which could be active when f is selected, and, for each δi, computing the
set Mi of methods which will be in the final product due to the activation of
δi. The definition of a product line (Section 2.4) specifies which deltas must or
could be active when f is selected. Conservatively, all deltas whose associated
delta clause has an application condition where f occurs are considered; this is
an approximation, since it can be the case that a delta δ is only active when both
f1 and f2 are selected, so that the selection of f1 does not imply the activation
of δ. For instance, the delta clause delta DataClientNrDelta in Listing 3 states
that this delta is active and must be applied after the deltas ClientNrDelta and
DataDelta (if they are also active) whenever the expression Data && ClientNr

holds. Conservatively, this delta is considered when computing the footprint of
Data, even though the effective activation of this delta also requires the selection
of ClientNr. Once the set of deltas that can be active when f is selected has
been obtained, an inspection of all delta declarations collects, for each δi, the
set Mi of methods added or modified7 by δi. The union of all the Mi is called
the footprint of f , denoted by Footprint(f), and can be computed statically.

Example 4.2. When studying the feature File according to the strategy of Sec-
tion 5.3, a product is generated, which includes 138 methods. However, the
footprint of the feature File only contains nine methods, which are those modi-
fied or created by delta FileDelta which

• adds class ReplicationFilePattern, containing six methods;

• modifies one method in class ReplicationSnapshotImpl;

• modifies two methods in class TesterImpl.

If the footprints of all features from a certain set (e.g., all non-obligatory
features, as described in Section 5.3) have to be analyzed, then it is possible,
up to a certain extent, to eliminate redundancies by considering which deltas
are involved in any footprint. Suppose a delta δ may be activated both by the
selection of f1 and by the selection of f2, i.e., both f1 and f2 appear in its delta
clauses. Suppose also that the method m and every method which is (directly or
indirectly) invoked by m are modified or created by δ. In this case, the analysis
result obtained for m during the analysis of the footprint of f1 can be safely
reused when analyzing the footprint of f2, thus resulting in a reduction of the
overall computational effort.

6Note that, if feature-oriented programming were used instead of delta-oriented program-
ming, then the footprint of a feature could be (more easily) extracted from the corresponding
feature module.

7Methods that are removed by a delta are not included because there is no code to be
analyzed anymore.

17

Generating and combining resource-usage annotations. As pointed out above,
the last two steps of the local approach to static analysis generate and combine
resource-usage annotations to obtain a measure of the resource usage of the code
under study. The presented implementation annotates methods with resource-
usage annotations representing asymptotic al complexity (in this paragraph, this
choice will be called (1a)), and uses the arithmetic mean to combine annotations
(in this paragraph, (2a)). However, the choice of the best way to generate
annotations and the best combination function is highly application-dependent,
and a thorough discussion is outside the scope of this paper.

With respect to the generation of resource-usage annotations from analysis
results, the following alternative approaches can be considered:

(1b) If the expected probability distribution of the input to the method under
study is known (whether exactly or not), then the upper bound computed
by the static analyzer, which is a function of the input size, can be easily
converted into the expected resource usage by replacing input variables
by their expected input size. For example, if the upper bound is 2n2, then
knowing that the average value for the input size is 100 may lead to the
numerical resource-usage annotation 2× 1002 = 20000.

(1c) If the maximum value of the input size is known, then an annotation can
be generated from the upper bound similarly to (1b).

As regards the combination of resource-usage annotations, the reason for
using the arithmetic mean can be the interest on a measure which takes all
methods into account. However, there are several reasonable alternatives:

(2b) If some more information is provided, then the weighted mean can be used;
for example, the weight associated to a method may depend on how often
it will be executed, according to the domain-dependent information that
could be available at the moment.

(2c) If the goal is to avoid computations whose resource consumption is un-
acceptable, then the maximum can be used. For example, such a com-
bination function could help to select code where no methods can have
exponential complexity.

(2d) In presence of a hard limit to resource-usage (e.g., the amount of available
memory), a threshold function can indicate if computations will exceed
the limit: if m is the maximum amount of resources available, then the
threshold t can be defined as t(x) = 0 if x ≤ m, and t(x) = 1 otherwise.
This combination function can only be used if (1c) is chosen as the method
to generate annotations.

In the following, the operator⊕ will denote the function which combines resource-
usage annotations into a single one, corresponding to a measure of the resource
usage of the code under study (whether a partial product or a footprint).

18

5. Strategies for Resource-Usage-Aware Configuration

This section discusses different ways to carry out the interaction between
Analyzer and Configurator , and points out advantages and drawbacks of each
of them.

Resource-Aware Configuration is a problem of optimization whose goal is
to select the optimal product in terms of resource consumption. In general,
we say that an algorithm is optimal if it always chooses the optimal product;
needless to say, optimality cannot be obtained in general because exact resource
consumption is not a computable property. On the other hand, an algorithm is
said to be optimal modulo Analyzer whenever it would be optimal if Analyzer
were perfect, i.e., if the results provided by the analyzer were always exact.
Optimality modulo Analyzer amounts to say than the inevitable loss of precision
only comes from resource-usage analysis. It is important to point out that the
notions of optimality and optimality modulo Analyzer both rely on establishing
how two products are to be compared w.r.t. their cost: given two products P ′

and P ′′, it can be case that the goal is to select the best for some specific input,
or on average, or on the worst case, or w.r.t. any other reasonable requirement.

Example 5.1. Suppose that the program P ′ has an exact resource consumption
of n2−n+10 where n is the size of its only parameter, and that the static analyzer
gives the upper bound n2 + 10, which is a good approximation of the exact cost.
On the other hand, suppose that the resource consumption of P ′′ is n + n, but
the static analyzer outputs n2 + n.

In this case, the best product for a specific input with size n = 5 is P ′′, and
the result of the analyzer leads to choose P ′′ as the best program. On the other
hand, for n = 20, P ′′ is still the best program because n+n < n2−n+ 10 when
n = 20, but P ′ is chosen. Finally, in order to compare P ′ and P ′′ on average,
a probability distribution of the input has to be provided.

In the following, obligatory features are either (1) features which have to be
selected according to the product-line definition (for example, the root feature,
or children of a group allof declaration which are not marked as opt); or (2)
key features, i.e., user-required features in the sense of Section 1.

5.1. Product-Based Analysis

In the first strategy, Analyzer obtains the resource estimates directly from
the final products. The process consists of three steps:

1. Given the product-line infrastructure PL, we first obtain the set of final
(valid) configurations ValidConf (Section 3);

2. for each Ci ∈ ValidConf containing all obligatory features, we generate
a product Pi ≡ P(Ci), and analyze it by running Analyzer(Pi, entry , R)
where R is the resource of interest;

3. the best candidate is the product P whose resource consumption u, corre-
sponding to the pair (entry , u), is the minimum among all products.

This approach is conceptually simple and keeps Analyzer and Configurator com-
pletely separate.

19

Advantages. The main advantage of this approach is that it can be potentially
implemented using existing technology since (1) there are tools that behave like
Configurator ; (2) there exist product generators for valid configurations; (3)
a static analyzer Analyzer for final products can be used; (4) techniques for
comparing upper bounds and choosing the minimum are available [7]; and (5)
there is little need to design complex interactions between these components.

This strategy is the most direct, since it solves the problem of choosing
between products by actually generating and studying complete products. It
is optimal modulo Analyzer since the process of picking the best product is
feasible if cost information is exact, provided the comparison criterion (worst-
case, best-case, average, input-specific, etc.) is correctly specified. However,
it is not strictly optimal because the best a sound resource-usage analysis can
do is giving upper bounds ui which correctly over-approximate the resource
consumption of the product Pi for any possible input data. Therefore, it is not
guaranteed that the chosen Pm is the best candidate, since the static analyzer
performs several approximations in order to obtain a sound result, and the loss
of information in the resource-usage analysis of a product can be larger than
the loss in the analysis of another one. One can easily provide examples for
which this leads to selecting a “best” candidate that is actually not the best.
Thus, the analysis is used as a heuristic for guiding the selection rather than as
a guarantee. Still, this strategy produces accurate results.

Disadvantages. The main drawback of this approach is its inefficiency. For a
product line with k valid configurations, we need to invoke the product generator
and the resource-usage analyzer k times. Each analysis is performed on a full
product, which can be a large and complex piece of software. The results from
analyzing one product cannot be reused when analyzing the next one, as there
is no knowledge on which parts of the product are the same as those of previous
products. Unfortunately, static analysis tools for a property as complex as
resource usage are not yet developed at an industrial level: while they can
handle medium-size programs, their application to commercial products is still
a research challenge. In conclusion, we argue that, although this strategy is
feasible in theory, it is beyond the current state of the practice.

Example 5.2. In the FAS case study, this approach involves generating 768
different products, analyzing each of them, and choosing the one that shows
the best performance behavior. Most products are, in terms of lines of code,
even bigger than the code implementing the whole product-line, thus making the
analysis of each single product very expensive. In general, the number of products
to be generated, together with their sizes (for our case study, each product has
more than 2.000 lines of code), can make this task prohibitively expensive.

5.2. Partial-Product Analysis

It is quite natural to think of an interleaved cooperation between the resource
analyzer and the configurator. In fact, it would be useful for the configurator to
get information about resource consumption as long as the configuration is built

20

(i.e., as long as features are selected), in order to give up adding features when-
ever the current feature set has a high probability to be inefficient. This strat-
egy can be obtained by interleaving the work of the configurator TreeBuilder
(Section 3.2) and Analyzer , in such a way that TreeBuilder invokes Analyzer
along the configuration process to be aware of the resource consumption asso-
ciated with partial (i.e., in the process of being computed) configurations. This
approach requires being able to estimate the resource consumption of partial
products associated with partial configurations.

Given a product-line infrastructure PL, the configuration tree τ (Section 3) is
partially built. Whenever a new node of τ (i.e., a partial configuration) is gener-
ated, the information about the resource consumption will allow the configurator
to decide if it is worth continuing the construction of such a configuration, or
if it is better to reject that path of the configuration tree. Partial-product-level
analysis consists of the following steps:

1. Starting from the root node of τ a partial configuration C ∈ PartConf is
computed, and a partial product P(C) is generated; whenever some C is
computed, all its ancestor nodes in τ have been computed before.

2. P(c) is incrementally analyzed by executing Analyzer(P(C), R), reusing as
much as possible the results inferred for the partial products corresponding
to ancestor nodes.

3. It is decided whether the estimated resource consumption u for P(C)
is “acceptable”; otherwise, the current branch of τ is pruned (i.e., the
children of C will not be considered).

In order to decide if the resource consumption along a path is acceptable, the
user can set a threshold (or maximal amount of resources) Limit before starting
configuration. Thus, in step 3, the simple check “u>Limit?” decides if the
current branch of the tree must be pruned or not. Another possibility is to keep
the results for the best product constructed so far (namely, umin), and prune a
branch if the resource consumption of a partial product already exceeds umin .

Example 5.3. Consider the FAS case study, and suppose that the user imposes
the expression size(fileset)2 as the threshold Limit; i.e., the set of files that are
to be transferred can be traversed at most a number of times which is quadratic
on its size. During the construction of the configuration tree, as soon as a
partial configuration C selects a feature that triggers a delta including method
transferItems (see Example 4.1), the threshold provided by the user is ex-
ceeded since the resource consumption of transferItems (namely, size(fileset)∗
size(rdir)2 + size(fileset)3 ∗ size(rdir)) is larger than size(fileset)2. Thus,
the branch of the configuration tree starting at C will be pruned.

It must be pointed out that, in general, pruning a branch of the configuration
tree could lead to rule out the best (complete) configuration, which could possi-
bly correspond to a node in the pruned branch. Supposed the branch rooted at
C is pruned because some feature in C contributes to get a resource consump-
tion beyond the limit. It can be the case that a feature f /∈ C is added at a

21

children node, which greatly lowers the global resource consumption. Indeed,
this can happen, so that this method is not optimal, not even modulo Analyzer .
However, this is not a common situation since it is unlikely that the impact
on resource usage of two features which can be selected in the same product is
opposite.

Example 5.4. Consider the partial product resulting from applying the delta
foo1 to entry in Listing 6. If we measure the number of instructions executed
by entry, the resource analysis infers a linear cost, namely, n0−x0 instructions,
where n0 and x0 refer to the initial values of n and x, respectively. Observe that
the while loop in the entry method is executed n−x times, explaining the linear
cost obtained. On the other hand, consider the partial product that results from
applying foo2 to the previously constructed (and analyzed) product: the resource
consumption of entry becomes (n0 − x0) ∗ (x0), which is quadratic. This is
because we invoke the method incr inside the while loop of entry and each of
the invocations executes the while loop of the new implementation of entry.
The latter while loop performs x iterations, which, multiplied by the number of
iterations of the while loop of entry, leads to a quadratic cost.

int entry(int x,int n){

while (x<n) x=incr(x); return x+n; }

delta foo1{ modifies int incr(int x) { return x++; } }

delta foo2{ modifies int incr(int x) {

int x0=x; while (x>0) {f++; x--;}; return x0++; } }

Listing 6: Partial-Product Analysis

This example reveals that it might not be accurate to prune τ , as a future modi-
fication might affect the resource consumption of a previously analyzed (partial)
product. The consumption can be increased (as in the example) but also re-
duced (e.g., if deltas are applied in the inverse order). Therefore, optimal (mod-
ulo Analyzer) results can only be obtained by building full configuration trees
and analyzing all the resulting complete products, which actually boils down to
product-based analysis.

There is another issue about the way code can be analyzed. The above steps
include a call Analyzer(P(C), R) to the analyzer, but such a call is, in general,
not possible by using an off-the-shelf static analyzer which aims at finding a
global upper bound to the resource consumption (Section 4.1) starting from the
entry method. The reason is that P(C) will be usually incorrect code since the
configuration C it comes from is not valid (there may be features missing, which
usually boils down to have calls to undefined methods, references to undefined
fields, etc.). Instead, the local approach to static analysis (Section 4.2) can be
chosen: the analyzer will study all methods in P(C) whose code is syntactically
correct. The generation of resource-usage annotations and their combination
via some operator ⊕ into a measure of the global resource usage of the partial
product would follow the discussion of Section 4.2.

22

Advantages. The main advantage of this approach comes from pruning the con-
figuration tree and avoiding building products whose resource consumption ex-
ceeds the provided threshold. Furthermore, as (partial) products are built in-
crementally by activating the corresponding deltas, incremental resource-usage
analysis [9] can be used, so that information gathered in the analysis of previous
partial products is reused whenever it is valid. In a different context and for a
different language, it is proven [9] that incremental resource analysis can save
up to 50% of the analysis time when compared to non-incremental program
analysis. In this context, incremental resource-usage analysis can be used in or-
der to save computational effort whenever adding a feature to a partial product
only affects a limited number of methods, so that previously-obtained results
for unaffected code can be reused.

Disadvantages. A problem with this approach is that generating partial prod-
ucts is not always feasible using the current technology from the ABS tool suite
since a partial product is, in general, incorrect code (some relevant parts of
the code might be missing). Indeed, the product generator aims at building a
final product, and, as soon as the generator finds a method that is not defined,
the whole process fails. As a consequence, most nodes in PartConf cannot be
evaluated since there is no tool for actually generating the product.

Concerning efficiency, Analyzer has to be invoked, in the worst case, on all
nodes PartConf of τ , and Section 3.2 indicated that the number of nodes can
be huge even for small feature trees. Therefore, this method is not practical
unless the resource of interest guarantees that most part of the configuration
tree will be pruned, or a better way to traverse τ is found.

On the other hand, as pointed out before, optimality is potentially lost
whenever a branch in the selection tree is pruned. This is because choosing
the locally best solution does not necessarily lead to the globally best solution,
since a feature added in a later selection might affect the resource consumption
significantly.

5.3. Feature-based Analysis

With the aim of devising a more practical strategy, we consider a third
possibility: assessing the resource consumption due to each feature f in the
product-line by generating and analyzing a product containing only f plus the
minimal number of features needed to get a valid configuration. The minimal
product for f (denoted Pµ(f)) is a valid product containing f such that removing
any other feature from it leads to an invalid configuration. In general, such a
product is not unique because different features could be selected from a group.

Definition 5.5 (minimal product). A minimal product for a feature f is de-
fined as follows. Note that, according to the syntax and semantics of µTVL [15],
group allof, group oneof and group [n1..*] declarations can be rewritten as,
respectively, group [n..n], group [1..1] and group [n1..n], where n is the
number of children features, so that the general form group [n1..n2] is the
only one to be considered. Then, the following rules are followed until the set of
selected features stabilizes:

23

(a) Pµ(f) contains the root feature;

(b) Pµ(f) contains the feature f under consideration, and all its ancestors in
the tree (that is, the parent of f , the parent of the parent, etc.);

(c) Given the declaration group [n1...n2] where f is one of the children, after
n1−1 children different from f have been chosen randomly, those of them
which are not marked by an opt modifier are included in Pµ(f);

(d) Given any other declaration group [n1...n2] where the parent feature is in
Pµ(f): after n1 children have been chosen randomly, those of them which
are not marked by an opt modifier are included in Pµ(f);

(e) Any feature required by this selection according to cross-tree relations is
also included in Pµ(f).

This definition of minimal products is similar to a × min(a) products in
related work [45]. However, their use is quite different, as the present work does
no comparison between a×min(a) and min(a). Instead, static analysis of Pµ(f)
following the local approach is performed.

The generation and analysis of Pµ(f) needs to be performed only for features
which are not obligatory, since the analysis of Pµ(f) aims at deciding whether
selecting f is good from the point of view of resource usage, and this makes no
sense for obligatory features because they will be selected in any case. Given
a product-line with non-obligatory features f1..fn, the feature-based analysis is
performed as follows: for each feature fi

1. The minimal product Pµ(fi) is generated;
2. The footprint of fi is computed;
3. For every method m in the footprint of fi, a call Analyzer(PL,m,R) is

executed according to Section 4.2, where R is the resource of interest;
4. Given all the analysis results (upper bounds), resource-usage annotation

are generated and combined via some ⊕ into a per-feature resource-usage
annotation for fi (Section 4.2).

Each per-feature resource-usage annotation is a representation of how well each
feature is expected to behave from the resource-usage point of view. Once per-
feature resource-usage annotations have been computed for every non-obligatory
feature, this information is passed to the configurator in order to choose the best
configuration according to resource-usage concerns.

Advantages. This methodology has a number of practical advantages with re-
spect to the others: (1) the number of minimal products to be analyzed is much
smaller than the number of products (in the FAS case study, only 13 compared
to 768), thus making this strategy much more feasible than the first two ones;
(2) every time a minimal product is analyzed, only a limited part of the code has
to be inspected: the footprint; and (3) the whole analysis process can take place
before the configuration begins, so that there is no need to design a complex
interaction between Analyzer and Configurator (the represents an important
advantage over the partial-product analysis, mainly).

24

adds Unit foo() {

while (myfield>0) {

x=new Ob();

m();

myfield=myfield-2;

}

}

Listing 7: Code corresponding to fA

modifies Unit m () {

myfield=myfield+1;

}

Listing 8: Code corresponding to fB

Disadvantages. Clearly, this approach is not optimal because the local approach
to static analysis is not. Moreover, interactions between different features in
a product are not considered. However, as we noted before, the other two
strategies are not optimal either, though the loss of precision in the product-
based strategy should be smaller. How close the results of this strategy are to
optimality also depends on the resource of interest, and the way resource-usage
annotation are generated and combined.

Example 5.6. In the ReplicationSystem example, there are 13 non-obligatory
features8 (9 are marked as opt and 4 are children of two group oneof declara-
tions), so that only 13 minimal products have to be locally analyzed. This is
a great improvement over the 768 products to be analyzed in the product-based
strategy. However, the feature-based approach does not allow appreciating how
different features behave when coexisting in a product: for instance, Search and
Business can both be selected in a given product, but no minimal product contains
both.

All in all, what the feature-based methodology can provide is a heuristic that
describes the performance behavior of each feature and helps the process of
configuration in the challenging task of choosing one configuration which, in
addition to be valid, is efficient w.r.t. some resource-usage metric.

5.4. Feature-Based Analysis with Interactions

The main disadvantage of the previous strategy is that it ignores interactions
among features. As pointed out in the literature [45], the combined presence of
several features might influence performance.

Example 5.7. For instance, consider a core code with a method Unit m() { }

whose body is empty. Consider two code fragments that belong to delta modules
activated by features fA and fB, respectively (Listings 7 and 8), and let memory
consumption be the resource of interest. If fA is considered in isolation, the
memory consumed by the above fragment of code is size(Ob) ∗ nat(myfield)/2,
where nat returns either 0 if myfield is negative as the loop will not be executed,
or the positive value of myfield. Observe that, at each execution, myfield is

8Under the assumption that no key features are required.

25

decremented by two, so that the number of loop iterations is nat(myfield)/2.
However, if we consider the interaction of both features, then the number of
iterations is not the same. In particular, the call to m executes an increment
of myfield. In this case, we have that the worst memory consumption of foo is
size(Ob) ∗ nat(myfield), which doubles the previous amount.

The resource usage of two interacting features fA and fB , denoted by ufA×fB ,
can be estimated similarly to the previous feature-based strategy. In particular,
minimal products Pµ(fA×fB) are generated, i.e., the minimal products includ-
ing both fA and fB , and the resource consumption of the resulting product is
estimated by local static analysis, obtaining ufA×fB . In the previous example,
ufA×fB returns an upper bound size(Ob)∗nat(myfield) for foo, while ufA would
be size(Ob) ∗ nat(myfield)/2.

A strategy that considers the combination of at most k interacting features,
where k is a fixed parameter, can be proposed. Consider three features fA,
fB , and fC , and k = 3: a feature-based analysis with interactions between up
to k features estimates the performance of (1) three minimal products Pµ(fA),
Pµ(fB) and Pµ(fC); (2) three minimal products containing two interacting fea-
tures, namely, Pµ(fA×fB), Pµ(fA×fC), and Pµ(fB×fC); and (3) one for the
three interacting features, namely, Pµ(fA×fB×fC). If k = 2, then the last
product would not be considered. The definition of minimal products for more
than one feature is a straightforward extension of Definition 5.5, and the foot-
print of some number of features considered together is simply the union of the
footprints of each feature.

As in the previous feature-based approach, Configurator will receive resource-
usage information which guides the process of finding the best configuration.
The approach which does not consider feature interactions generates a per-
feature resource-usage annotation. However, considering interactions between
up to k features implies that each non-obligatory feature is involved in more
than one minimal product, so that several resource-usage annotation can cor-
respond to it. The best way to go seems to provide the configurator with all
the information about minimal products. Whenever Configurator has to choose
between two configurations, the following methodology can be used. For every
configuration C:

• Let F be the set of non-obligatory features included in C, and let k be
the maximum number of features involved in studied interactions.

• Let af1,..,fm be the resource-usage annotation corresponding to the mini-
mal product Pµ(f1 × ..× fm).

• The per-configuration resource-usage annotation for C will be aF1
⊕aF2

⊕
.. ⊕ aFn

where {F1, .., Fn} is a partition of F , and it is k-maximal in the
sense that each element of the partition has cardinality at most k, and
the numbers of elements in the partition is minimal (i.e., F is split into a
minimal number of non-overlapping subsets);

26

This means that a configuration is analyzed by studying the minimal products
which consider the most complex feature interactions (up to k). The configura-
tion with a smaller global resource-usage annotation is preferred. In total, the
number of products generated will be z =

∑k
i=1

(
n
i

)
.

One interesting aspect of this strategy is that we can know a priori if two
features are not interacting. For the sake of resource analysis, two features
might interact only if one feature modifies a method used in the other feature.
We can perform a simple pre-processing to discard the lack of interaction among
features. Techniques introduced in the literature [45] can also be used to rule
out feature interactions.

Advantages. This strategy is obviously more accurate than the pure feature-
based analysis without interactions. Besides, the pre-processing mentioned
above and the fact that we can discard spurious interactions could make it
both practical and accurate.

Disadvantages. If the constant k is big or even equal to the number of features,
and there is no pre-processing to discard spurious interactions, then the number
of products to be studied can be the same order of magnitude as the product-
based strategy, thus making the approach prohibitively expensive. Moreover, in
order to design this strategy state-of-the-art configurators are not sufficient, as
resource-usage annotations refer, in general, to sets of features, and have to be
combined into a single per-configuration annotation.

6. Implementation of a Feature-Based Resource-Usage-Aware Con-
figurator

We developed a prototype resource-usage-aware product configurator that
implements the feature-based strategy described in Section 5.3. Figure 2 pro-
vides an overview of its work-flow. The first phase is the Generation of Resource-
Usage Annotations, and consists of the following steps:

(1a) Given a product-line infrastructure PL, the component MinimalProduct-
Generator generates the minimal products for all non-obligatory features.

(1b) The off-the-shelf SACO static resource-usage analyzer [6] is used to analyze
each minimal product Pµ(f) by following the local approach (Section 4.2)
on the footprint of f .

(1c) The component PerformanceAnnotator takes the upper bounds on re-
source usage returned by SACO for every method in the footprint of f
and (1) transforms each of them into a resource-usage annotation; (2)
combines all the annotations into a per-feature resource-usage annotation
for f ; and (3) annotates all non-obligatory features in the feature tree with
such annotations.

The final output of this phase is a PartiallyAnnotatedFeatureModel. The second
phase is the Product Configuration itself, in which:

27

ProductLineAssets KeyFeatures

MinimalProductGenerator

Pµ(f1)..Pµ(fn)

SACO

UpperBounds

PerformanceAnnotator

PartiallyAnnotatedFM

ConfiguratorPreProcessor

FullyAnnotatedFM

Configurator

ConfiguratorOutput

Visualizator&UserInteraction

UserPreferencies&Goals

Legend:

Component

Artifact

Figure 2: The Resource-Usage-Aware Configurator

(2a) The PartiallyAnnotatedFeatureModel is pre-processed to derive annota-
tions for upper-level features from the annotations provided by the Per-
formanceAnnotator (we note that most non-obligatory features are leaves
of the feature tree).

(2b) The component Visualization&UserInteraction asks the user to provide
his/her quality constraints and concerns.

(2c) The configurator suggests a small set of valid configurations that best fit
the objective function representing the user’s input.

(2d) The user selects one of those configurations (this step is not needed if step
(2c) already gives a single configuration).

The final output is a PSL specification from which the product can be generated
by tools available in the ABS tool-suite (Section 1).

The main decisions made during the implementation of the above compo-
nents are described below.

28

6.1. Generation of Resource-Usage Annotations

The main decision in this phase is which functions will be used in order to
generate and combine resource-usage annotations (Section 4.2). As pointed out
before, such choice is application-dependent, and the present work only suggest
some possibilities.

Generation of minimal products. A minimal product Pµ(f) is computed and
generated for every non-obligatory feature f . Computing a minimal product
involves reading the µTVL definition of the feature tree and identifying the set
of non-obligatory features. Afterwards, the features that will be included in a
minimal product Pµ(f) are selected following Definition 5.5. Given the feature
specification for Pµ(f), the actual product can be generated by existing tools
available in the ABS tool-suite.

Example 6.1. In the FAS case study, the minimal product Pµ(Cloud) for Cloud

includes all obligatory features, Cloud itself, and either Seq or Concur (chosen
randomly). This configuration is a minimal valid configuration containing Cloud.
The minimal product for Concur involves selecting all obligatory features, Concur
itself, and Cloud, which is required by Concur. Finally, Pµ(Client) consists of all
obligatory features, Client, one between Site and Cloud, and one between Seq

or Concur (when Concur is selected, Cloud has also to be chosen).
In this case study, the total size of the code (including deltas, the product-line

declaration, etc.) is around 4.000 lines. All the products (i.e., the code produced
by the product generator) generated in the tests, either minimal or not, have
roughly the same size. Only considering the actual code (i.e., excluding delta
modules, product declarations, etc.) gives a size of around 2.000 lines for all
generated products (this will be discussed later in Table 3), including the final
best product selected by the configurator (2.025 lines of code). This means that
generating minimal products does not need to give any significant advantage in
terms of code size with respect to generate “complete” products. As pointed out
above, the advantage is that minimal products are only a small part of the set
of valid products.

Static Analysis. Once minimal products have been generated, SACO analyzes
each of them. The resource of interest is a parameter of the analyzer, which, in
the current implementation of our solution, supports either number of instruc-
tions (at the level of source code) or memory consumption (i.e., the amount of
memory locations used at runtime). The SACO analyzer also allows measuring
data-transmission sizes, the number of requests to servers, and other interesting
resource-usage metrics.

The analyzer takes the local approach of Section 4.2: for every minimal
product Pµ(f), only methods belonging to the footprint of f are considered,
and each of them is analyzed separately. The result is an upper bound u to
resource usage for every analyzed method, or “unknown” if the analysis was not
successful.

As resource-usage is a very complex (and uncomputable) property of software
artifacts, it is unavoidable that, in some cases, the static analyzer cannot give

29

any useful information about a piece of code, and has to fail, i.e., return the
“unknown” value. In this respect, it is important to point out that the local
approach on the footprint of some feature f makes it easier (with respect to the
global approach) to analyze the code, since methods are analyzed separately
and (provided a suitable function is used in the next step) useful results can be
obtained even if the analyzer fails sometimes.

Resource-usage annotations. While upper bounds output by SACO in the pre-
vious step provide a precise estimate of the resource consumption, manipulating
them in the subsequent configuration phase is rather complex. In a product line
with a large number of products and core assets, managing such expressions
grows increasingly difficult, and results become hard to interpret, especially
from the point of view of the user. For instance, deciding if an upper bound u
is smaller than another one u′ requires the use of specific techniques [7]. The
result of the comparison is often not simply a Boolean answer, but rather con-
straints on the input values under which the comparison can be proved: u could
be smaller for some specific values of the input, and larger for others.

The implementation generates resource-usage annotations from upper bounds,
in the form of numeric constants giving information of the asymptotic complex-
ity of methods. In order to carry out this mapping, we first transform an upper
bound u into asymptotic form (“big-O” notation). This transformation can al-
ways be applied, and can be done locally and efficiently [3]. The next step is to
map the asymptotic upper bound to a resource-usage annotation, according to
the following table:

complexity of the upper bound annotation
constant 0

logarithmic, sub-linear or linear 100
polynomial (up to degree 3) 200

high-degree polynomial or exponential 300
unknown (the analyzer could not get an upper bound) 400

Example 6.2. Consider the upper bound obtained from analyzing the method
transferItems in Example 4.1 which is already in asymptotic form. According
to the above choice, the expression (polynomial of degree four) will be mapped
into the annotation 300.

The next step is to combine (see Section 5.3) per-method annotations am into
a per-feature annotation af describing the resource usage of f . In the imple-
mentation, we are currently using the arithmetic mean of the resource-usage
annotations of all methods in the footprint of f .

Example 6.3. We analyzed all methods in the footprint of File (Example 4.2)
w.r.t. the cost metrics “number of instructions”. Once SACO generates resource-
usage annotations for all of them, the overall annotation aFile has been obtained
as the average, and the result is 133. This number is obtained by analyzing
each of the nine methods in the footprint: 5 of them have constant cost (the

30

resource-usage annotation is 0), 2 of them give a low-degree polynomial upper
bound (annotation 200) while the last two cannot be analyzed (annotation 400).
The final resource-usage annotation is given to Configurator using the following
syntax:

extension File {

Int im_numberOfInstructions in {0,133};

ifout: im_numberOfInstructions == 0;

im_numberOfInstructions == 133;

}

Listing 9: Performance Annotation by SACO

The first instruction declares im_numberOfInstructions as an integer that can
take values 0 or 133. The second line states that, if the feature is not se-
lected (ifout), then it must take value 0. Finally, according to the last line, the
resource-usage annotation is 133 whenever the feature is selected. Three lines
are output for every different cost model considered in the analysis. This in-
formation is what is actually sent to the configurator in order to carry out the
following phase.

6.2. Product Configuration

The configuration preprocessor combines the annotations af provided in the
previous phase. Listing 10 shows an excerpt with the definition of preprocessing
options for memory consumption which is yielded in XML. It states that the
annotation of a higher-level feature is done using the compositionOperator, which
is “+” in this case.

<preprocessingMetric>

<metricId>im_memoryConsumption</metricId>

<compositionOperator>+</compositionOperator>

<parentAnnotatedWithChildConsideration>No</parentAnn...tion>

<valueRange>calculate</valueRange>

<defaultRange>0..15</defaultRange>

</preprocessingMetric>

Listing 10: Preprocessing for Configuration

The resulting annotation will be a formula:

n∑
i=0

childFeaturei.im_memoryConsumption

which represents the sum of the memory consumption of all children present
in the configuration; if childFeaturei is not selected in the configuration, then
childFeaturei.im_memoryConsumption is 0. The appropriate composition function
can be easily defined for each specific metric and application.

After obtaining the fully-annotated feature model, any objective function
can be defined on the attributes of the root feature. The quality concerns pro-
vided by the user are translated into an appropriate objective function. In the

31

objective function, the priorities of different metrics can be reflected. For ex-
ample, the property im_memoryConsumption can be more important to the user
than im_numberOfInstructions. The user can directly quantify how important
they are absolutely or several standard approaches for eliciting prioritization
can be used. The Analytical Hierarchical Process (AHP) is a popular approach
for finding priorities from relative importance of different criteria.

In addition to the objective function, the user can also set quality constraints
by providing a threshold that cannot be exceeded. Quality constraints can be
related to one or more quality metrics. Once the objective function and the
quality constraints are elicited, the configurator finds suitable product configu-
rations for the user.

Example 6.4. In our example feature model, we have the feature Client and
the user wants her product to be launched in a very thin client with respect to
memory. She can set constraints on that feature specifying how much memory
consumption she can tolerate, e.g., some value t. The constraint is specified as
follows:

Client .im_memoryConsumption ≤ t

In order to find valid solutions for the configuration problem, our configura-
tor uses the Java-based CSP solver called Choco Java, which converts the feature
model and the objective function into a Constraint Satisfaction Problem (CSP),
and asks the CSP solver to solve it. For eliciting the user’s quality and func-
tional requirements and for visualizing the suggested product configurations,
the open source tool FeatureIDE was extended [55].

7. Experiments on Case Studies

We have implemented the generator of resource-usage annotations as an
extension of the SACO analyzer: it takes as input the ABS files containing all
the code, and outputs a µTVL file with the resource-usage annotations described
in Example 6.3. In the FAS case study, the total size is 3.548 lines of code.

This prototypical implementation follows the third strategy (Feature-based
analysis, Section 5.3) with the local approach to the analysis of each minimal
product. Interactions between features (fourth strategy, Section 5.4) are not
taken into account because the implementation is still at an early stage. How-
ever, we believe that the results are already relevant since the analysis of the
footprint of a minimal product is interesting on its own, and paves the way for
future developments. Indeed, to get meaningful results from the analysis of a
portion of a product code (the footprint) is not always possible, and depends on
the property under study and many other aspects; e.g., when actual execution
of the code is needed, as in dynamic analysis, it is not easy to identify how
each part of the code affects the whole computation. In any case, our attempt
demonstrates, at least, that this way to analyze products has potential and can
be applied to a hard task like statically computing upper bounds to resource
consumption.

32

f t(Pµ(f)) F (Pµ(f)) M(Pµ(f)) L(Pµ(f)) FP(f) t(af) af
time for features in methods in lines in meths in time for global

feature min. prod. min. prod. min. prod. min. prod. footprint annot. annot.

Client 1643 ms 11 132 2030 3 1783 ms 0
Server 1655 ms 11 132 1977 1 1694 ms 0
File 1669 ms 11 140 2053 9 15675 ms 133

Journal 1647 ms 11 139 2069 7 4309 ms 86
Update 1659 ms 11 131 1972 1 1686 ms 0

ClientNr 1645 ms 11 131 2024 2 1746 ms 0
Search 1652 ms 11 132 2030 2 2042 ms 200

Business 1641 ms 12 142 2063 2 2035 ms 200
Data 1641 ms 13 150 2160 3 2112 ms 133
Seq 1633 ms 10 130 1972 21 9952 ms 76

Concur 1658 ms 10 133 2025 24 14874 ms 163
Site 1657 ms 10 132 1972 0 1658 ms 0
Cloud 1645 ms 10 132 1972 0 1645 ms 0

Table 3: Experimental evaluation on the case study

The resource under consideration in the experiments is the number of in-
structions. As already mentioned, in the feature model there are 8 obligatory
features and 13 non-obligatory ones; consequently, 13 minimal products have to
be generated. In order not to decrease the variability of the product line, no
features have been selected as key features. For each non-obligatory feature f ,
the footprint is computed, and the core part of SACO (i.e., the static analyzer
properly said) is called once for each method in the footprint. Experiments have
been carried out on a MacBook Pro laptop with a 2.4 GHz Intel Core i5 processor
and 4Gb of memory, running Mac OS 10.7.5. The execution has been repeated
5 times, and reported times (expressed in milliseconds) were computed as the
average of all the executions. Table 3 summarizes the experiments: column “f”
is the name of the feature under study; “t(Pµ(f))” is the time needed to gen-
erate the corresponding minimal product by using existing tools; “F (Pµ(f))”,
“M(Pµ(f))” and “L(Pµ(f))” are, respectively, the number of features, of meth-
ods, and of lines of code (considering only the core ABS code) in the minimal
product; “FP(f)” is the size (number of methods) of the corresponding foot-
print; “t(af)” is the time needed to obtain the global resource-usage annotation
of the minimal product; finally, “af” is the per-feature resource-usage anno-
tation (according to Section 6.1, it ranges from 0 to 400; the lower, the more
efficient).

We can observe that all minimal products are very similar in size, since most
code is shared by all of them, and that the time needed to generate them (most
of which is taken by the execution of the ABS tools for generating products) is
also similar. The most significant difference lies in the size of their footprint:
this is consistent with the intuition that the difference between two features

33

is related to the portion of code they directly affect. Note also that some
features have no methods in their footprint; this means that, actually, they are
“dummy” features which do not modify the code, so that they are given a default
resource-usage annotation 0. As regards the efficiency of the analysis process,
there is a common pre-processing task which is the same for every feature, and
takes around 1350 milliseconds. Column “t(af)” shows the total time taken by
SACO; there is a 10-seconds timeout on each call to the analyzer, which is only
reached once when analyzing a method in the footprint of File. It must be
pointed out that all the minimal products have been analyzed separately, while
the implementation could have been optimized by reusing several parts of the
computation; for example, most of the work done by SACO on a method can
be reused for other methods in the same footprint, and part of the work on a
product can be reused for other products. To improve the efficiency following
these and other directions is part of future work.

By using the annotations shown in Table 3, the resource-usage-aware config-
urator suggested 64 possible configurations. The overall resource-usage annota-
tion for each of these configurations is 76, obtained according to the configura-
tion preprocessing described in Listing 10. Out of the possible configurations, if
we consider only the configurations that have the minimum number of features
constituting a valid configuration, we get the following two configurations:

P1: { ReplicationSystem, Installation, Resources, JobProcessing,
ReplicationItem, Dir, Load, Schedule, Site, Seq }

and

P2: { ReplicationSystem, Installation, Resources, JobProcessing,
ReplicationItem, Dir, Load, Schedule, Cloud, Seq }

In the absence of resource-usage annotations, the configurator could suggest
another minimal configuration:

P3: { ReplicationSystem, Installation, Resources, JobProcessing,
ReplicationItem, Dir, Load, Schedule, Cloud, Concur }

The overall resource-usage annotation of P3 is 133, which is worse than
the overall resource-usage annotations of P1 and P2, despite the fact that all
of them are minimal valid configurations. As expected, using the proposed
resource-usage annotations, we obtain configurations that have better overall
performance.

7.1. Validation

We argue that our experiments, even if still at a very preliminary stage,
constitute a proof of concept that resource-usage-aware configuration is feasi-
ble. However, it still remains to see how close our resource-usage annotations
are to the actual resource consumption of the products. This requires profiling
tools (which are currently at the development stage) to be applied to the gener-
ated products. Moreover, it requires defining and evaluating heuristics for the
different operators we have used in the feature-based strategy.

34

// in class ReplicationFilePattern; resource usage = 12 instructions
FileEntry getContents() { return internal.getContents(); }

// in class BasicReplicationItemImpl; resource usage = 9 instructions
FileEntry getContents() { return dirContent(snapshot); }

// resource usage = 6 instructions
def FileEntry dirContent(Directory f) = entries(snd(f));

Figure 3: The code of ReplicationFilePattern.getContents and the methods and func-
tions called by it

In the absence of such profiling tools, the results obtained from the static
analyzer can be compared with upper bounds computed “by hand”. We focus
on the feature File, whose corresponding footprint consists of 9 methods added
or modified by the delta FileDelta. The global resource-usage annotation for
this feature is 133, and comes from the fact that, according to SACO, 5 methods
have constant resource usage (annotation 0), 2 are quadratic (annotation 200),
and 2 could not be successfully analyzed (annotation 400). All 5 supposedly
constant methods have actually a constant resource usage. For example, the
execution of the method getContents (shown in Figure 3 together with the meth-
ods and functions it calls9) declared in the class ReplicationFilePattern (cre-
ated by FileDelta) actually takes 12 steps (instructions), as inferred by SACO:
in fact, this method calls BasicReplicationItemImpl.getContents(), whose ex-
ecution takes 9 steps, and the 3 remaining steps are just to set up the call
and return the result. The same happens with the call to dirContent from
BasicReplicationItemImpl.getContents().

Not surprisingly, there are cases where the result inferred by SACO is sub-
optimal. For example, the static analyzer is not able to infer an upper bound for
the method compareDirWithPattern (whose code is shown for clarity in Figure 4),
added by FileDelta to the modified class TesterImpl. This method simply calls
TesterImpl.compareEntrySets(this,eids,aids,ee,ae), for which SACO actually
infers a quadratic upper bound eids∗ee + eids∗ae +29/2∗eids − ee − ae −9/2.
The reason why the upper bound for compareEntrySets does not lead to an up-
per bound for compareDirWithPattern is that the input for compareEntrySets is
computed by applying some functions, and the analyzer cannot find an upper
bound for them. Concretely, the function getFileIdFromDir, invoked twice to
produce the first and second actual parameter of compareEntrySets (namely,
formal parameters eids and aids), has polynomial resource usage, but the an-
alyzer is not able to produce this result because of the nature of the recursion
used in it. In fact, the recursive calls in getFileIdFromEntries are combined
by union, which is quadratic and whose resource usage depends on both its pa-
rameters. Moreover, there is no way to establish the size of entries(c) from

9entries and snd are built-ins whose inferred resource usage is 2.

35

Unit compareDirWithPattern(String pattern,Directory e,Directory a) {

this.compareEntrySets(

filters(pattern,getFileIdFromDir(e)),

filters(pattern,getFileIdFromDir(a)),

qualifyFileEntry(entries(snd(e)),fst(e)),

qualifyFileEntry(entries(snd(a)),fst(a))

);

}

def Set<FileId> getFileIdFromDir(Directory d) =

case snd(d) {

Entries(e) =>

case fst(d) == rootId() {

True => getFileIdFromEntries1(e);

False => getFileIdFromEntries(fst(d),e);

};

};

def Set<FileId> getFileIdFromEntries1(FileEntry fe) =

case fe {

EmptyMap => EmptySet;

InsertAssoc(Pair(i,c),fs) =>

case isFile(c) {

True => Insert(i,getFileIdFromEntries1(fs));

False => union(getFileIdFromEntries(i,entries(c)),

getFileIdFromEntries1(fs));

};

};

def Set<FileId> getFileIdFromEntries(FileId id, FileEntry fe) =

case fe {

EmptyMap => EmptySet;

InsertAssoc(Pair(i,c),fs) =>

case isFile(c) {

True => Insert(makePath(id,i),getFileIdFromEntries(id,fs));

False =>

union(getFileIdFromEntries(makePath(id,i),entries(c)),

getFileIdFromEntries(id,fs));

};

};

Figure 4: The code of compareDirWithPattern and related functions

the size of fe. This makes the analysis of this piece of code something which is
beyond the capabilities of SACO and, as far as we know, any state-of-the-art
static resource-usage analyzer. Section 8 contains a more detailed discussion of
the limitations of static analysis when it comes to resource usage and related
properties like termination.

In the experiments, we used the arithmetic mean on resource-usage annota-
tions for all the methods in the footprint as the final annotation of a feature, and
the sum of the resource-usage annotations of all features as the resource-usage

36

annotation of a product. Obviously, other choices could have been taken. Future
work includes proposing new heuristics that allow having annotations which are
closer to the actual resource usage, and undertaking a thorough experimental
evaluation.

Finally, it remains to discuss why the configurations P1 and P2 are actually
better than P3. The main difference lies in selecting Seq instead of Concur. It
would not be realistic to claim that P1 and P2 are better than P3 because
executing them would take less time. This is way beyond the scope of this
paper since there are many issues which, ideally, should be addressed before
making the claim: e.g.: how the statistical distribution of inputs is (i.e., how
well a program performs when all possible inputs are taken into account, each
one with its related probability); or: how and whether a smaller number of
executed instructions affects the “real” execution time (in milliseconds) of a
program. Even if the focus were limited to the platform-independent notion of
number of instructions (i.e.,, without studying how the real execution time is
affected), and the worst case (instead of the average case) were only considered,
the limits of static resource-usage analysis would not allow to compute an upper
bound for such a complex piece of code as the case study.

However, the local approach used in the experiments is still relevant to the
problem of finding the best configuration: in fact, Seq was found to be better
than Concur in terms of its global resource-usage annotation because it contains a
smaller number of methods which could be problematic in terms of performance.
In particular, SACO is able to infer a constant or linear upper bound for 20
out of 21 methods in the footprint corresponding to Seq, whereas there are 5
methods in the footprint of Concur for which an upper bound could be obtained.
Although this is not a guarantee that the performance of P1 and P2 will be
better than P3, at least it indicates that executing P3 is more likely to fall into
the execution of non-terminating or very expensive methods. We believe that
(1) this is consistent with the usual philosophy underlying static analysis, where
the generality of the results is at least as important as the precision on specific
cases; and (2) it paves the way for improvements which could be obtained thanks
to advances in the static resource-usage techniques and tools.

8. Threats to Validity

This section discusses threats to the validity of our approach. We first revise
the internal components of our approach which can compromise the precision
of the method. Then, we discuss the generalization of our approach to be used
in combination with other static and dynamic analyzers.

8.1. Internal Validity

As pointed out before, resource-usage-aware configuration is a problem of
optimization whose goal is to select the product which is optimal in terms of
resource usage. It is clear that optimality cannot be obtained in general because
the exact resource consumption is not computable. Still, we want to discuss the

37

internal sources of imprecision that are due to the methods we use to select the
best product, namely, the loss of precision due to resource-usage analysis.

There is an inevitable loss of precision due to the approximations that must
be performed in order to obtain an upper bound on resource usage. Such source
of precision loss have been described above (in Section 4 and elsewhere). Here,
we simply list the rest of such approximations, and point to related work where
technical descriptions can be found:

1. Non-linear ranking functions [43]: most existing resource-usage analyzers
can bound the number of iterations of loops when there is a linear ranking
function that approximates such bounds; however, when this is not the
case, one needs to use more advanced techniques which are frequently not
incorporated into state-of-the-art analyzers. As an example, SACO can
only find linear ranking functions.

2. Field-sensitive analysis [8]: there might be also a big loss of precision
when the resource consumption of a fragment of code depends on the
size of data that are not local to the methods, e.g., it is stored in class
fields. This is a challenging issue because one needs to be sure that these
data are not accessed (and modified) outside the fragment of code under
study (in transitive calls). If certain condition about aliasing between
variables are met, then such global data can be converted into local data,
and the resource-usage analysis can obtain bounds that depend on it.
Unfortunately, this is not always the case, and the result is the need for
approximations which unavoidably lose precision.

3. Size-abstractions [20]: When the resource usage depends on the size of
data allocated in complex data structures (as in the case of a loop travers-
ing a tree), it is necessary to use size abstractions which accurately cap-
ture how the size of the data structure decreases in the computation. For
example, path-length [52] is a practical measure used in object-oriented
programming. However, there is an inevitable loss of precision due to its
use (since it only says that the path-length of the data structure decreases,
but it does not say by how much it decreases).

4. Concurrency [4]: For thread-level-concurrency, we are not aware of any
resource analyzer that can handle thread interleavings. For actor-based
concurrency, there have been recent proposals [10, 4] to leverage the meth-
ods used in the analysis of sequential code to the concurrent paradigm.
The loss of precision in the analysis of concurrent programs occurs when
tasks interleave, and we have to assume that global data might have been
modified at these interleaving points. SACO works for actor-based con-
currency, and is able to give accurate upper bounds for a wide class of
programs.

8.2. External Validity

Generalization to other static analyzers. We have illustrated the four strategies
proposed in the article using the SACO resource-usage analysis tool. However,
our method can be used in combination with any other resource-usage analyzer.

38

For instance, in principle, CoFloCo [25], SPEED [27] or Loopus [49] could be
used as well. On the other hand, the advantages and disadvantages of each
strategy entirely depend on the property that we are considering (in our case,
resource consumption). Other properties that can be inferred by static analyzers
might lead to different assessment of the strategies. For instance, if one simply
wants to measure the number of lines of each product, then the first strategy
would be the ideal one, because even if the number of products can be huge, the
number of lines can be counted easily and efficiently. Therefore, we do not claim
that resource-aware configuration is an idea which can be easily transposed to
other properties than resource usage.

Dynamic analyzers. In contrast to other approaches [45], our discussion of the
four strategies is based on the fact that the property is obtained by rigorous
static analysis and by code inspection only, i.e., programs under study are not
actually run and all possible inputs are taken into account. Otherwise, the
second strategy would not make sense as one cannot run in general a partial
application. However, in principle, it is possible to analyze a partially-built pro-
gram (though the state of implementation of resource analyzers is behind this).
Also, the evaluation of a feature-based strategy would be not always possible,
since some features may need a context in order to execute, i.e., the application
must be entirely built and executed from a main, while static analyzers can in
general analyze the code of features separately from their execution context.

9. Related Work

Very few authors have addressed the problem of obtaining quality indicators
for features and/or product configurations that can be used to guide the product
configuration process.

In the classification and survey of analysis strategies for software product
lines presented by Thum et al. [54], analysis strategies applied to software prod-
uct lines are classified in Product-Based (unoptimized and optimized) Analyses,
Family-Based Analyses, Feature-Based Analyses, and combined analysis strate-
gies. The authors focus on analyses that operate statically, and the types of
software analysis taken into account are Type Checking, Static Analysis, Model
Checking, and Theorem Proving. None of the static analysis strategies referred
in that survey – thirteen strategies mostly published during the last four years
– aim at supporting resource-usage-aware configuration.

Soares at al. [50] present a systematic review of the analysis of non-functional
properties in software product lines. They focus on execution/runtime non-
functional properties, visible and measurable at source code or during the prod-
uct execution, such as reliability and performance. 36 primary studies are clas-
sified in Quality Prediction, Quality Estimation, and Feature Selection. In the
context of our work, the category of interest is Quality Estimation, despite some
work reported in Quality Prediction being of interest too. Performance appeared
as one of the most commonly addressed runtime properties in this survey, which
helped us to check the completeness of the related work discussed in this section.

39

Kolesnikov et al. [37] propose the use of quality predictors (e.g., a predic-
tor for high memory consumption) based on measures of internal product at-
tributes to guide a sampling process that determines the products that fall into
the category denoted by the given predictor (e.g., products with high memory
consumption). In their approach, predictors are established from the relation-
ship between internal and external product attributes and a small training set
of products; a sampling framework based on cooperative game theory generates
a collection of feature sets that belongs to the quality category of interest; and
products containing one or more of these feature sets will belong to the same
quality category. The general idea is the same as ours: to only use statically
available information from the feature model and the source code. However,
our approach is more suitable for resource-usage aware product configuration,
because it finds out the configurations including the desired key features and
optimizing resource consumption, instead of finding out products that fall into
a certain category, but might not have any relation to the desired product in
terms of key features. On the other hand, their approach can be used for dif-
ferent quality predictors, whereas the approach described in the present paper
is specific to resource usage.

Similarly to our approach, Sincero et al. [48] address the problem of finding
out product configurations that include the desired key features and optimize
non-functional properties. In their approach, the concept of Partial Configura-
tion is used to enable the user to select features in a feature model that must be
present in the product configuration (corresponding to our key features), and to
mark features as open (might or might not be present) and blocked (will not be
present). The approach relies on a testing infrastructure in which products are
generated and tested, incrementally feeding a data base of non-functional prop-
erties for valid product configurations. Processing mechanisms are in charge of
reasoning about the influence of each feature or combination of features on the
quantification of a certain non-functional property. In their case study, they
tested all valid product configurations derived from the partial configuration
and used analysis of covariance as processing mechanism. In this approach,
the number of valid product configurations derived from the partial configura-
tion and, thus, to be tested might still be high. The authors mention that an
approximation of the response for not-tested configurations can be calculated.

Siegmund et al. [46, 45] present an approach for estimating non-functional
properties of products in an SPL by aggregating the non-functional properties
of selected features. Based on the feature documentation, a small but suitable
set of products are compiled and measured, and the values of non-functional
properties per feature are approximated from deltas between two products that
differ only in the presence or absence of this feature. This approach takes into
consideration feature interaction, by having a model that defines known feature
interactions and measures their influence. The influence of a feature interaction
is estimated by adding a single product that contains the interacting features to
the set of products, and by computing the delta between non-functional prop-
erties of the actually measured product and predicted non-functional properties
of the same product. The authors show that for a product line with n features,

40

already n + 1 measurements can lead to acceptable predictions of footprint10.
With regard to measurement of feature interactions, the initial approach [46]
took into consideration the mapping between features and implementation units,
source code, and domain expert knowledge to identify more complex feature in-
teractions. An alternative in case of lack of domain knowledge was to simply
assume the existence of a feature interaction between each pair of features (pair-
wise measurement), which substantially increases the number of products to be
measured. The approach described in [45] is an evolution of the one described
in [46], in which the authors reduce the effort for pair-wise measurement and
propose three heuristics for detecting the relevant performance feature inter-
actions: (1) pair-wise (or first-order) interactions are the most common form
of performance-relevant feature interactions; (2) second-order feature interac-
tions can be predicted by analyzing already detected pair-wise interactions; and
(3) there are few features (called hot-spot features) that interact with many
features. Their general approach is implemented in a tool called SPL Con-
queror [47]; however, performance is treated as a variant-wise quantifiable prop-
erty in [47], which has several implications: (1) it is not used to support the
selection of product configurations that best fits the user requirements, but used
in a second stage for defining which product configuration is optimal taking per-
formance into consideration; (2) the product configurations must be generated
and measured; (3) as a result of the consequent need to reduce the number
of product configurations to be generated and measured, features that have a
negative effect on a property that is of interest to a customer are from the be-
ginning excluded from further considerations. In our approach, performance is
treated as a feature-wise quantifiable property, so that it can be considered in
the objective function in a standard way, which allows supporting the selection
of feature configurations with the definition of constraints, if desired, as well as
optimization taking into consideration other non-functional properties instead
of excluding features from the beginning from further consideration.

In summary, similarly to our feature-based analysis, these related papers
[48, 46, 45] propose an approach to predict non-functional properties by aggre-
gating the influence of each selected feature on a non-functional property. A
fundamental difference is that the estimate of the performance of the features is
based on formal methods (i.e., static resource-usage analysis) in our approach,
while their works perform measurements dynamically. They generate and mea-
sure a small set of products and, by comparing measurements, they approximate
the influence of each feature on the non-functional property in question. The
differences between static and dynamic analysis are well-known: while mea-
surements consist in executing the application and monitoring the measure of
interest during runtime, static analysis infers the properties by examining the
code only and without executing the program. The two approaches are com-
plementary: rigorous resource-usage guarantees (upper bounds) can only be

10Here, footprint means the size of the compiled program, and is completely different from
our notion of feature footprint, introduced in Section 4.2.

41

found by static analysis; however, due to loss of precision in the analysis, the
guarantees can be too pessimistic, and measurement-based techniques can give
more accurate estimates. Our analysis of the four strategies is based on the fact
that the property is obtained through rigorous analysis by inspecting the code
only. Otherwise, the second strategy would not make sense as one cannot run
a partial application. Also, the evaluation of a feature-based strategy would be
not always possible, since some features may need a context in order to execute
(i.e., the application must be run from a main, and it is not possible to evaluate
the feature for different input values).

It is well-known that the use of formal methods has some advantages. In
our case, we rely on a static analysis which infers approximations that are safe
for any possible input data value. In addition, an important consequence of
this choice of static analysis is that we can analyze partial products or focus on
the performance behavior of fragments of the product (e.g., the footprint), while
they need to analyze performance globally, as they perform measurements. This
gives us flexibility.

Finally, there are authors who propose the use of domain expert judgment to
assign qualitative or quantitative values to the interdependency between func-
tional features and quality attributes (e.g. [51, 59]). The approach by Zhang
et al. [59] uses Analytical Hierarchy Process (AHP), a well-known pair-wise
comparison method used to calculate the relative ranking of different opinions,
as underlying technology, whereas Soltani et al. [51] propose the use of Strati-
fied Analytical Hierarchy Process (S-AHP), because it significantly reduces the
number of needed pairwise comparisons. Both approaches depend on the avail-
ability of domain experts, who must engage themselves in a time-consuming
and error-prone activity.

10. Conclusion and Future Work

This article introduces a notion of resource-usage-aware configuration based
on static analysis, which strives for finding a selection of features with good
behavior from the point of view of resource usage, and complying with the
quality constraints provided by the user. We have envisaged several strategies
for resource-usage-aware configuration, and described a prototype implementa-
tion of the most practical strategy. Our implementation shows that it is feasible
to use an off-the-self static analyzer to obtain resource-usage indicators that can
be used to annotate feature models. Using the annotated feature model, the
configurator is able to suggest a small set of valid product configurations that
best fit the objective function representing the user input.

The main difference with respect to related work is the use of static analysis.
Most approaches in the literature execute the generated products for some spe-
cific workload, while the present approach aims at obtaining upper bounds to
the resource usage, which is a different (and much more difficult) problem. To
transform the resulting upper bounds into a useful piece of information for the
process of configuration is also a non-trivial task. Moreover, the way products
are analyzed in the feature-based strategy is also new and interesting.

42

Our implementation and its application to case studies constitutes a proof
of concept for resource-usage-aware configuration. However, a thorough experi-
mental evaluation is required to assess the accuracy of the envisaged strategies
and, in particular, to define appropriate heuristics that lead to efficient products.
In future work, we plan to define and evaluate different heuristics to combine
the contribution of each method to the resource consumption of the feature, and
also more refined heuristics to map resource-usage upper bounds into annota-
tions. Also, we currently do not have tools to profile the generated products
and see the actual resource consumption for a wide range of input data. This
is also subject of ongoing work.

As a final remark, it must be pointed out that scalability is hard to obtain
in this framework because of the limitations of static analysis when a hard-to-
compute property like resource usage is studied. This is a drawback of static
analysis more than our work, and our proposals would certainly benefit from
any advance in that research field.

Acknowledgements. This work was partially funded by the European Union
projects FP7-ICT-231620 (HATS: Highly Adaptable and Trustworthy Software
Using Formal Models - www.hats-project.eu/) and FP7-ICT-610582 (ENVIS-
AGE: Engineering Virtualized Services - www.envisage-project.eu), by the
Spanish project TIN2012-38137, and by the CM (Comunidad de Madrid) project
S2013/ICE-3006.

[1] E. Abbasi, A. Hubaux, and P. Heymans. A toolset for feature-based con-
figuration workflows. In Proceedings of SPLC, pages 65–69, 2011.

[2] G. Agha and C. J. Callsen. Actorspace: An open distributed programming
paradigm. In Proceedings of PPoPP, pages 23–32, 1993.

[3] E. Albert, D. Alonso, P. Arenas, S. Genaim, and G. Puebla. Asymptotic
Resource Usage Bounds. In Proceedings of APLAS, volume 5904 of Lecture
Notes in Computer Science, pages 294–310. Springer-Verlag, 2009.

[4] E. Albert, P. Arenas, J. Correas, S. Genaim, M. Gómez-Zamalloa,
G. Puebla, and G. Román-Dı́ez. Object-Sensitive Cost Analysis for Con-
current Objects. Software Testing, Verification and Reliability, 2015. To
appear.

[5] E. Albert, P. Arenas, A. Flores-Montoya, S. Genaim, M. Gómez-Zamalloa,
E. Mart́ın-Mart́ın, G. Puebla, and G. Román-Dı́ez. SACO: Static Analyzer
for Concurrent Objects. In Proceedings of TACAS, volume 8413 of Lecture
Notes in Computer Science, pages 562–567. Springer-Verlag, 2014.

[6] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, and G. Puebla.
COSTABS: A Cost and Termination Analyzer for ABS. In Proceedings of
PEPM, pages 151–154. ACM Press, 2012.

43

www.hats-project.eu/
www.envisage-project.eu

[7] E. Albert, P. Arenas, S. Genaim, I. Herraiz, and G. Puebla. Comparing
Cost Functions in Resource Analysis. In Proceedings of FOPARA, Revised
Selected Papers, volume 6324 of Lecture Notes in Computer Science, pages
1–17. Springer-Verlag, 2009.

[8] E. Albert, P. Arenas, S. Genaim, G. Puebla, and G. Román-Dı́ez. Condi-
tional Termination of Loops over Heap-allocated Data. Science of Com-
puter Programming, 92:2–24, 2014.

[9] E. Albert, J. Correas, G. Puebla, and G. Román-Dı́ez. Incremental Re-
source Usage Analysis. In Proceedings of PEPM, pages 25–34. ACM Press,
2012.

[10] E. Albert, A. Flores-Montoya, S. Genaim, and E. Martin-Martin. Ter-
mination and Cost Analysis of Loops with Concurrent Interleavings. In
Proceedings of ATVA, volume 8172 of Lecture Notes is Computer Science,
pages 349–364. Springer-Verlag, 2013.

[11] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement.
IEEE Transactions on Software Engineering, 30(6):355–371, 2004.

[12] D. Benavides, P. Trinidad, and A. Ruiz-Cortez. Automated Reasoning on
Feature Models. In Proceedings of CAiSE, pages 491–503. Springer-Verlag,
2005.

[13] F. S. D. Boer, R. Hähnle, E. B. Johnsen, R. Schlatte, and P. Y. H. Wong.
Formal modeling of resource management for cloud architectures: An in-
dustrial case study. In Proceedings of ESOCC, volume 7592 of Lecture Notes
in Computer Science, pages 91–106. Springer-Verlag, 2012.

[14] J. Bosch, S. Deelstra, and M. Sinnema. COVAMOF in Systems and Soft-
ware Variability Management Concepts, Tools and Experiences, pages 141–
150. Springer-Verlag, 2013.

[15] D. Clarke, R. Muschevici, J. Proença, I. Schaefer, and R. Schlatte. Vari-
ability modelling in the ABS language. In Proceedings of FMCO 2010, vol-
ume 6957 of Lecture Notes in Computer Science, pages 204–224. Springer-
Verlag, 2011.

[16] A. Classen, Q. Boucher, and P. Heymans. A text-based approach to feature
modelling: Syntax and semantics of TVL. Science of Computer Program-
ming, pages 1130–1143, 2010.

[17] M. Codish, S. Debray, and R. Giacobazzi. Compositional Analysis of Mod-
ular Logic Programs. In Proceedings of POPL, pages 451–464. ACM Press,
1993.

[18] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fix-
points. In Proceedings of POPL, pages 238–252. ACM Press, 1977.

44

[19] P. Cousot and R. Cousot. Modular Static Program Analysis. In Proceedings
of CC, volume 2304 of Lecture Notes in Computer Science, pages 159–178.
Springer-Verlag, 2002.

[20] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proceedings of POPL, pages 84–96. ACM
Press, 1978.

[21] K. Czarnecki and U. Eisenecker. Generative Programming. Addison-Wesley
Longman Publishing Co., Inc., 2000.

[22] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged configuration
through specialization and multi-level configuration of feature models. Soft-
ware Process Improvement and Practice, 10(2):143–169, 2005.

[23] K. Czarnecki, S. She, and A. Wasowski. Sample spaces and feature models:
There and back again. In Proceedings of SPLC, pages 22–31, 2008.

[24] L. Etxeberria, G. S. Mendieta, and L. Belategi. Modelling variation in
quality attributes. In Proceedings of VaMoS, pages 51–59, 2007.

[25] A. Flores-Montoya and R. Hähnle. Resource Analysis of Complex Programs
with Cost Equations. In Proceedings of APLAS, volume 8858 of Lecture
Notes in Computer Science, pages 275–295. Springer-Verlag, 2014.

[26] B. González-baixauli, J. C. S. do Prado Leite, and J. Mylopoulos. Visual
Variability Analysis for Goal Models. In Proceedings of RE, pages 198–207.
IEEE, 2004.

[27] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. SPEED: Precise and Ef-
ficient Static Estimation of Program Computational Complexity. In Pro-
ceedings of POPL, pages 127–139. ACM Press, 2009.

[28] J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A Genetic Algorithm
for Optimized Feature Selection with Resource Constraints in Software
Product Lines. Journal of Systems and Software, 84(12):2208–2221, 2011.

[29] M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental
Analysis of Constraint Logic Programs. ACM Transactions on Program-
ming Languages and Systems, 22(2):187–223, 2000.

[30] J. Hoffmann and M. Hofmann. Amortized Resource Analysis with Polyno-
mial Potential. In Proceedings of ESOP, volume 6012 of Lecture Notes in
Computer Science, pages 287–306. Springer-Verlag, 2010.

[31] A. Hubaux, A. Classen, and P. Heymans. Formal modelling of feature
configuration workflows. In Proceedings of SPLC, pages 221–230, 2009.

[32] A. Hubaux, P. Heymans, P.-Y. Schobbens, D. Deridder, and E. Abbasi.
Supporting multiple perspectives in feature-based configuration. Software
and Systems Modeling, pages 1–23, 2011.

45

[33] S. Jarzabek, B. Yang, and S. Yoeun. Addressing quality attributes in
domain analysis for product lines. Software, IEEE Proceedings, 153(2):61–
73, 2006.

[34] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS:
A Core Language for Abstract Behavioral Specification. In Proceedings of
FMCO, volume 6957 of Lecture Notes in Computer Science, pages 142–164.
Springer-Verlag, 2012.

[35] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study. Technical Re-
port CMU/SEI-90-TR-21, SEI, 1990.

[36] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In Proceedings of ECOOP,
volume 1241 of Lecture Notes in Computer Science, pages 220–242, 1997.

[37] S. S. Kolesnikov, S. Apel, and N. Siegmund. Predicting Quality Attributes
of Software Product Lines Using Software and Network Measures and Sam-
pling. In Proceedings of VaMoS, pages 1/5–5/5, 2013.

[38] J. Kuusela and J. Savolainen. Requirements engineering for product fami-
lies. In Proceedings of ICSE, pages 61–69. ACM Press, 2000.

[39] J. Lee and K. C. Kang. A feature-oriented approach to developing dynam-
ically reconfigurable products in product line engineering. In Proceedings
of SPLC, pages 131–140, 2006.

[40] A. Murashkin, M. Antkiewicz, D. Rayside, and K. Czarnecki. Visualization
and Exploration of Optimal Variants in Product Line Engineering. In
Proceedings of SPLC, pages 111–115. ACM, 2013.

[41] K. Pohl, G. Böckle, and F. Van Der Linden. Software Product Line Engi-
neering: Foundations, Principles, and Techniques. Springer-Verlag, 2005.

[42] M. Riebisch, K. Böllert, D. Streitferdt, and I. Philippow. Extending feature
diagrams with uml multiplicities. In Proceedings of IDPT, pages 23–27,
2002.

[43] S. Sankaranarayanan, H. Sipma, and Z. Manna. Non-linear loop invariant
generation using gröbner bases. In Proceedings of POPL, pages 318–329.
ACM Press, 2004.

[44] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-
oriented programming of software product lines. In Proceedings of SPLC,
pages 77–91, 2010.

[45] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. S. Batory,
M. Rosenmüller, and G. Saake. Predicting performance via automated
feature-interaction detection. In Proceedings of ICSE, pages 167–177, 2012.

46

[46] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel, and
S. S. Kolesnikov. Scalable Prediction of Non-functional Properties in Soft-
ware Product Lines. In Proceedings of SPLC, pages 160–169, 2011.

[47] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, S. Apel, and
G. Saake. SPL Conqueror: Toward Optimization of Nton-functional Prop-
erties in Software Product Lines. Software Quality Journal, 20(3-4):487–
517, 2012.

[48] J. Sincero, W. Schröder-Preikschat, and O. Spinczyk. Approaching Non-
functional Properties of Software Product Lines: Learning from Products.
In Proceedings of APSEC, pages 147–155. IEEE Computer Society, 2010.

[49] M. Sinn, F. Zuleger, and H. Veith. A Simple and Scalable Static Analysis
for Bound Analysis and Amortized Complexity Analysis. In Proceedings of
CAV, volume 8559 of Lecture Notes in Computer Science, pages 745–761.
Springer-Verlag, 2014.

[50] L. Soares, P. Potema, I. Machado, I. Crnkovic, and E. Almeida. Analy-
sis of Non-Functional Properties in Software Product Lines: a Systematic
Review. In Proceedings Euromicro DSD/SEAA, pages 328–335, 2014.

[51] S. Soltani, M. Asadi, M. Hatala, D. Gasevic, and E. Bagheri. Automated
planning for feature model configuration based on stakeholders’ business
concerns. In Proceedings of ASE, pages 536–539. IEEE, 2011.

[52] F. Spoto, F. Mesnard, and É. Payet. A termination analyzer for java byte-
code based on path-length. ACM Transactions on Programming Languages
and Systems, 32(3), 2010.

[53] T. Than Tun, Q. Boucher, A. Classen, A. Hubaux, and P. Heymans. Re-
lating requirements and feature configurations: a systematic approach. In
Proceedings of SPLC, pages 201–210, 2009.

[54] T. Thum, S. Apel, C. Kastner, I. Schaefer, and G. Saake. A Classifica-
tion and Survey of Analysis Strategies for Software Product Lines. ACM
Computing Surveys, 47(1):6:1–6:45, 2014.

[55] K. Villela, T. Arif, and D. Zanardini. Towards Product Configuration Tak-
ing into Account Quality Concerns. In Workshop on Formal Methods and
Analysis in Software Product Line Engineering (FMSPLE). Proceedings of
SPLC, Volume 2, pages 82–90. ACM Press, 2012.

[56] J. White, B. Dougherty, and D. Schmidt. Selecting highly optimal archi-
tectural feature sets with filtered cartesian flattening. Journal of Systems
and Software, 82(8):1268–1284, 2009.

[57] J. White, B. Dougherty, D. Schmidt, and D. Benavides. Automated rea-
soning for multi-step feature model configuration problems. In Proceedings
of SPLC, pages 11–20, 2009.

47

[58] J. White, J. A. Galindo, T. Saxena, B. Dougherty, D. Benavides, and D. C.
Schmidt. Evolving feature model configurations in software product lines.
Journal of Systems and Software, 87:119–136, 2014.

[59] G. Zhang, H. Ye, and Y. Lin. Quality attribute modeling and quality aware
product configuration in software product lines. Software Quality Journal,
22(3):365–401, 2014.

[60] H. Zhang, S. Jarzabek, and B. Yang. Quality Prediction and Assessment for
Product Lines. In Proceedings of CAiSE, pages 681–695. Springer-Verlag,
2003.

48

	Introduction
	Summary of Contributions
	Organization of the Article

	SPLE on a Case Study
	Case Study
	Feature Models
	Feature Implementations
	Linking Feature Models to Feature Implementations
	Product Specifications
	Product Generation

	Product Configuration
	Definition
	Configuration Trees

	Static Resource-usage Analysis
	The global approach
	The local approach

	Strategies for Resource-Usage-Aware Configuration
	Product-Based Analysis
	Partial-Product Analysis
	Feature-based Analysis
	Feature-Based Analysis with Interactions

	Implementation of a Feature-Based Resource-Usage-Aware Configurator
	Generation of Resource-Usage Annotations
	Product Configuration

	Experiments on Case Studies
	Validation

	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Conclusion and Future Work

