
Theoretical Computer Science () –

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Reachability-based acyclicity analysis by Abstract
Interpretation
Samir Genaim a, Damiano Zanardini b,∗
a Complutense University of Madrid, Spain
b Technical University of Madrid, Spain

a r t i c l e i n f o

Article history:
Received 7 June 2012
Received in revised form 14 November
2012
Accepted 14 December 2012
Communicated by D. Sannella

Keywords:
Abstract interpretation
Acyclicity analysis
Termination analysis
Object-oriented programming
Heap manipulation

a b s t r a c t

In programming languages with dynamic use of memory, such as Java, knowing that a
reference variable x points to an acyclic data structure is valuable for the analysis of
termination and resource usage (e.g., execution time ormemory consumption). For instance,
this information guarantees that the depth of the data structure to which x points is greater
than the depth of the data structure pointed to by x.f for any field f of x. This, in turn,
allows bounding the number of iterations of a loop which traverses the structure by its
depth, which is essential in order to prove the termination or infer the resource usage of
the loop. The present paper provides an Abstract-Interpretation-based formalization of a
static analysis for inferring acyclicity, which works on the reduced product of two abstract
domains: reachability, whichmodels the property that the location pointed to by a variable
w can be reached by dereferencing another variable v (in this case, v is said to reach w);
and cyclicity, modeling the property that v can point to a cyclic data structure. The analysis
is proven to be sound and optimalwith respect to the chosen abstraction.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Programming languages with dynamic memory allocation, such as Java, allow creating and manipulating cyclic data
structures. The presence of cyclic data structures in the program memory (the heap) is a challenging issue in the context of
termination analysis [7,10,1,29], resource usage analysis [30,13,3], garbage collection [22], etc. As an example, consider the
loop ‘‘while (x!=null) do x:=x.next;’’: if x points to an acyclic data structure before the loop, then the depth of the data structure
to which x points strictly decreases after each iteration; therefore, the number of iterations is bounded by the initial depth
of (the structure pointed to by) x. On the other hand, the possibility that x points to a cyclic data structure forbids, in general,
proving that the loop terminates.

Automatic inference of such information is typically done by (1) abstracting the loop to a numeric loop ‘‘while(x) ←
{x>0, x>x′},while(x′)’’; and (2) bounding the number of iterations of the numeric loop. The numeric loopmeans that, if the
loop entry is reached with x pointing to a data structure with depth x > 0, then it will eventually be reached again with x
pointing to a structure with depth x′ < x. The key point is that ‘‘x!=null’’ is abstracted to x > 0, meaning that the depth of a
non-null variable cannot be 0; moreover, abstracting ‘‘x:=x.next’’ to x > x′ means that the depth decreases when accessing
fields. While the former is valid for any structure, the latter holds only if x is acyclic. Therefore, acyclicity information is
essential in order to apply such abstractions.

In mainstream programming languages with dynamic memory manipulation, data structures can only be modified by
means of field updates. If, before x.f:=y, x and y are guaranteed to point to disjoint parts of the heap, then there is no possibility

∗ Corresponding author. Tel.: +34 600317288.
E-mail address: damiano.zanardini@gmail.com (D. Zanardini).

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.12.018

http://dx.doi.org/10.1016/j.tcs.2012.12.018
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:damiano.zanardini@gmail.com
http://dx.doi.org/10.1016/j.tcs.2012.12.018

2 S. Genaim, D. Zanardini / Theoretical Computer Science () –

to create a cycle. On the other hand, if they are not disjoint, i.e., they share a common part of the heap, then a cyclic structure
might be created. This simple mechanism has been used in previous work [26] in order to declare x and y, among others,
as (possibly) cyclic whenever they share before the update. In the following, we refer to this approach as the sharing-based
approach to acyclicity analysis.

The sharing-based approach to acyclicity is simple and efficient, however, there can be an important loss of precision in
typical programming patterns. For example, consider ‘‘y:=x.next.next; x.next:=y;’’, which typically removes an element from a
linked list, and let x be initially acyclic. After the first command, x and y clearly share, so that they should be declared as finally
cyclic, even if, clearly, they are not. When considering x.f:=y, the precision of the acyclicity information can be improved if
it is possible to know how x and y share. To this end, there are four possible scenarios: (1) x and y alias; (2) x reaches y;
(3) y reaches x; (4) they both reach a common location. The field update x.f:=y might create a cycle only in cases (1) and (3).
An acyclicity analysis based on similar observations has been considered before in the context of C programs [17], where the
analysis has been presented as a data-flow analysis; however, no formal justification for its correctness has been provided.
In what follows, we refer to this approach as the reachability-based approach to acyclicity analysis.

1.1. Contributions

The main contribution of this paper is essentially theoretical. In particular, the paper formalizes an existing reachability-
based acyclicity analysis [17]within the framework of Abstract Interpretation [11], and proves its soundness and optimality:

1. We define an abstract domain Iτ
rc , which captures the reachability information about program variables (i.e., whether

there can be a path in the heap from the location ℓv bound to some variable v to the location ℓw bound to some w),
and the acyclicity of data structures (i.e., whether there can be a cyclic path starting from the location bound to some
variable).

2. A provably sound and optimal abstract semanticsCτ
ζ
J_K(_) of a simple object-oriented language is developed,whichworks

on Iτ
rc and can often guarantee the acyclicity of Directed Acyclic Graphs (DAGs), which most likely will be considered

as cyclic if only sharing, not reachability, is taken into account. With respect to the original analysis, the definition of
the abstract semantics involves additional effort like dealing with specific features of object-oriented languages, and
discussing some technical improvements.

As a proof of concept, the abstract semantics has been also implemented in the COSTA [2] COSt and Termination Analyzer as a
component whose result is an essential information for proving the termination or inferring the resource usage of programs
written in Java bytecode. Focusing on full Java bytecode, the implementation has also to deal with advanced features of the
language like exceptions and static fields.

The present paper is based on preliminary work by the same authors which was published as a short workshop version
[15] and as a technical report [16].

1.2. Related work

A reachability-based acyclicity analysis for C programs was developed in [17]; however, that analysis was presented as a
data-flow analysis, and it did not include any formal justification of its correctness. Our paper provides a formalization of a
similar analysis in terms of Abstract Interpretation, and includes soundness proofs. Note that [17] uses the terms ‘‘direction’’
and ‘‘interference’’, respectively, for reachability and sharing.

As far as Abstract-Interpretation-formalized cyclicity analyses are concerned, the one by Rossignoli and Spoto [26] is the
most related work. This analysis is only based on sharing (not on reachability), and, as discussed in the paper, is less precise
than the reachability-based approach.

The work on Shape Analysis [31] is related because it reasons about heap-manipulating programs in order to prove
program properties. In most cases, safety properties are dealt with [6,27,25]. On the other hand, termination is a liveness
property, and is typically the final property to be proven when analyzing acyclicity. Therefore, work on liveness properties
will be consideredmore deeply.Most papers [24,4,7,10,9] use techniques based onModel Checking [23], Predicate Abstraction
[20], Separation Logic [24] or Cyclic proofs [9] to prove properties for programswhichwork on single-linked heaps. Thismeans
that only one heap cell is directly reachable from another one, which is basically the same as having, in an object-oriented
language, only one classwith one field. This somehow restricts the structure of the heap and, in some cases, allows obtaining
more precise results. On the contrary, the present paper deals with a technique which does not rely on such an assumption:
as the language is object-oriented, every object can havemultiple fields. Otherworks [5] dealwith single-parentheaps,which
are multi-linked but sharing-free; needless to say, the present paper handles heap structures where sharing is more than
a possibility. There also exist other works [19] based on Separation Logic which efficiently prove program properties and
deal with cyclic structures, but are specialized to a limited set of data structures like single-linked lists, double-linked lists
or trees. Also, in most of these works, the heap size is bounded by some constant, which is also a minor limitation. On the
contrary, the present paper deals with data structures which can have practically any shape, and tries to infer information
about the shape on its own. It is convenient to point out that the acyclicity analysis under discussion does not focus on

S. Genaim, D. Zanardini / Theoretical Computer Science () – 3

1class OrderedList {
2 Node head, lastInserted;
3

4 int insert(int i) {
5 Node c,p,n;
6 int pos;
7 // I7 = ∅
8 pos:=0; // I8 = ∅
9 n:=new Node; // I9 = ∅

10 n.value:=i; // I10 = ∅
11 c:=this.head; // I11 = {this c}
12 while (c!=null && c.value<i) do {
13 pos:=pos+1; // I13 = {this c, this p, p c}
14 p:=c; // I14 = {this c, this p}
15 c:=c.next; // I15 = {this c, this p, p c}
16 } // I16 = {this c, this p, p c}
17 n.next:=c; // I17 = {this c, this p, p c, n c}
18 if (p=null)
19 then this.head:=n; // I19 = {this c, this p, this n, p c, n c}
20 else p.next:=n; // I20 = I17 ∪ {this n, p n}
21 // I21 = I19 ∪ I20 = I20
22 this.lastInserted:=n; // I22 = I21
23 return pos+1; // I23 = I22
24 }
25}
26

27class Node {
28 Node next;
29 int value;
30}

Fig. 1. The running example and the result of the analysis, put in comments.

1 3 8 9

x

head

next next next

lastInserted

Fig. 2. A graphical representation of the data structure on which the example works.

directly proving liveness properties; instead, it is supposed to provide useful information to a cost1 or termination analyzer
which will perform the task.

1.3. Organization

The rest of the paper is organized as follows: Section 2 presents an example of reachability-based acyclicity analysis.
Section 3 defines the syntax and semantics of a simple Java-like language. Section 4 introduces the abstract domains
for reachability and cyclicity, and their reduced product, and Section 5 defines the abstract semantics, and proves some
important properties. Finally, Section 6 concludes the paper. Proofs of the technical results are available in Appendix.

2. An example of reachability-based acyclicity analysis

This section describes the essentials of the reachability-based acyclicity analysis [17], and its advantages over the sharing-
based one, by mean of an example. This example will also be used in the rest of the paper to illustrate the different technical
parts of the analysis.

Consider the program depicted in Fig. 1. The class OrderedList implements an ordered linked listwith two fields: head and
lastInserted point to, respectively, the first element of the list and the last element which has been inserted. The class Node
implements a linked list in the standard way, with two fields value and next. Fig. 2 shows a possible instance of OrderedList.

1 This analysis is actually implemented in COSTA, which handles both cost and termination of the Java bytecode programming language.

4 S. Genaim, D. Zanardini / Theoretical Computer Science () –

The method insert adds a new element to the ordered list: it takes an integer i, creates a new node n for i (lines 9–10), looks
for the position pos of n (lines 11–16), adds n to the list (lines 17–20), makes lastInserted point to the new node (lines 22),
and finally returns pos (lines 23). The goal is to infer that a call of the form ‘‘x.insert(i)’’ never makes x cyclic. This is important
since, when such a call is involved in a loop like following one

1 x:=new OrderedList;
2 while (j>0) do { i:=read(); x.insert(i); j:=j−1; }

if x cannot be proven to be acyclic after insert, then it must be assumed to be cyclic from the second iteration on. This, in turn,
prevents from proving termination of the loop at lines 12–16, since it might be traversing a cycle.

The challenge in this example is to prove that the instructions at lines 19 and 20 do not make any data structure cyclic.
This is not trivial since this, p, and n share between each other at line 17; depending on how they share, the corresponding
data structures might become cyclic or remain acyclic. Consider line 20: if there is a path (of length 0 or more) from n to p,
then the data structures bound to them become cyclic, while they remain acyclic in any other case. The present analysis is
able to infer that n and p share before line 20, but n does not reach p, which, in turn, guarantees that no data structure ever
becomes cyclic. It can be noted that reachability information is essential for proving acyclicity, since the mere information
that p and n share, without knowing how they do, requires to consider them as possibly cyclic, as done, for example, by
Rossignoli and Spoto [26].

3. A simple object-oriented language

This section defines the syntax and the denotational semantics of a simplified version of Java. Class, method, field, and
variable names are taken froma setX of valid identifiers. A program consists of a set of classesK ⊆ X ordered by the subclass
relation≺. Following Java, a class declaration takes the form ‘‘class κ1 [extends κ2] { t1 f1; . . . tn fn; M1 . . . Mk}’’ where each ‘‘ti fi’’
declares the field fi to have type ti ∈ K ∪ {int}, and eachMi is a method definition. Similarly to Java, the optional statement
‘‘extends κ2’’ declares κ1 to be a subclass of κ2. Amethod definition takes the form ‘‘t m (t1 w1, . . ., tn wn) {tn+1 wn+1; . . . tn+p wn+p;
com}’’ where: t ∈ K∪{int} is the type of the return value;w1, . . . , wn ∈ X are the formal parameters;wn+1, . . . , wn+p ∈ X
are local variables; and com is a sequence of instructions according to the following grammar:

exp ::= n | null | v | v.f | exp1 ⊕ exp2 | new κ | v.m(v̄)
com ::= v:=exp | v.f :=exp | com1;com2 |

if exp then com1 else com2 | while exp do com | return exp

where v, v̄,m, f ∈ X; n ∈ Z; κ ∈ K; and ⊕ is a binary operator (Boolean operators return 1 for true and 0 for false).
For simplicity, and without loss of generality, conditions in if and while statements are assumed not to create objects or
call methods. A method signature κ.m(t1, . . . , tn):t refers to a method m defined in class κ , taking n parameters of type
t1, . . . , tn ∈ K ∪{int}, and returning a value of type t . Given a method signaturem, letmb be its code com;mi its set of input
variables {this, w1, . . . , wn}; ml its set of local variables {wn+1, . . . , wn+m}; and ms

= mi
∪ml.

A type environment τ is a partial map from X to K ∪ {int} which associates types to variables at a given program point.
Abusing notation, when the context is clear, type environments will be confused with sets of variables; i.e., the partial map
will be confused with its domain when the type of variables can be ignored. A state over τ is a pair consisting of a frame and
a heap. A heap µ is a partial mapping from an infinite and totally ordered set L of memory locations to objects; µ(ℓ) is the
object bound to ℓ ∈ L in the heap µ. An object o ∈ O is a pair consisting of a class tag o.tag ∈ K , and a frame o.frm which
maps its fields into V = Z∪L∪ {null}. Shorthand is used: o.f for o.frm(f); µ[ℓ → o] to modify the heap µ such that a new
location ℓ points to object o; and µ[ℓ.f → v] to modify the value of the field f of the object µ(ℓ) to v ∈ V . A frame φ maps
variables in dom (τ) to V . For v ∈ dom (τ), φ(v) refers to the value of v, and φ[v → v] is the frame where the value of v
has been set to v, or defined to be v if v ∉ dom (φ). The set of possible states over τ is

Στ =

⟨φ, µ⟩

 1. φ is a frame over τ , µ is a heap, and both are well-typed
2. rng (φ) ∩L ⊆ dom (µ)
3. ∀ℓ ∈ dom (µ). rng (µ(ℓ).frm) ∩L ⊆ dom (µ)

.

Given σ ∈ Στ , σ̂ and σ̌ refer to its frame and its heap, respectively. The complete lattice Iτ
♭ = ⟨℘(Στ), Στ ,∅,∩,∪⟩ defines

the concrete computation domain.
A denotation δ over two type environments τ1 and τ2 is a partial map from Στ1 to Στ2 : it basically describes how the

state changes when a piece of code is executed. The set of denotations from τ1 to τ2 is ∆(τ1,τ2). Interpretations are special
denotations which give a meaning to methods in terms of their input and output variables. An interpretation ι ∈ Γ maps
methods to denotations, and is such that ι(m) ∈ ∆(mi,{out}) for each signature m in the program. Note that the variable
out is a special variable which will be used to denote the return value of a method.

Denotations for expressions and commands are depicted in Fig. 3. An expression denotation Eι
τ JexpK maps states from

Στ to states from Στ∪{ρ}, where ρ is a special variable for storing the expression value. A command denotation C ι
τ JcomK

maps states to states, in presence of ι ∈ Γ . The function newobj(κ) creates a new instance of the class κ with integer fields
initialized to 0 and reference fields initialized to null, while newloc(σ̌) returns the first free location, i.e., the first ℓ /∈ dom (σ̌)
according to the total ordering on locations. The function lkp resolves themethod call and returns the signature of themethod

S. Genaim, D. Zanardini / Theoretical Computer Science () – 5

Eι
τ
JnK(σ) =⟨σ̂ [ρ → n], σ̌ ⟩

Eι
τ
JnullK(σ) =⟨σ̂ [ρ → null], σ̌ ⟩

Eι
τ
Jnew κK(σ) =⟨σ̂ [ρ → ℓ], σ̌ [ℓ → newobj(κ)]⟩where ℓ = newloc(σ̌)

Eι
τ
JvK(σ) =⟨σ̂ [ρ → σ̂ (v)], σ̌ ⟩

Eι
τ
Jv.f K(σ) =⟨σ̂ [ρ → σ̌ (σ̂ (v)).f], σ̌ ⟩

Eι
τ

q
exp1⊕exp2

y
(σ) =⟨σ̂ [ρ → σ̂1(ρ)⊕ σ̂2(ρ)], σ̌2⟩where

σ1 = Eι
τ

q
exp1

y
(σ) and σ2 = Eι

τ

q
exp1

y
(⟨σ̂ , σ̌1⟩)

Eι
τ
Jv0.m(v1, . . . , vn)K(σ) =⟨σ̂ [ρ → σ̂2(out)], σ̌2⟩where

σ2 = ι(m)(σ1) and σ1 is such that
1. σ̌1 = σ̌ ;
2. σ̂1(this) = σ̂ (v0);
3. ∀1≤i≤n. σ̂1(wi) = σ̂ (vi); and
4. m = lkp(σ , v0.m(v1, . . . , vn));

C ι
τ
Jv:=expK(σ) =⟨σ̂ [v → σ̂e(ρ)], σ̌e⟩

C ι
τ
Jv.f :=expK(σ) =⟨σ̂ , σ̌ [ℓ.f → σ̂e(ρ)]⟩where ℓ = σ̂ (v)

C ι
τ

t
if exp then com1

else com2

|

(σ) =if σ̂e(ρ) ≠ 0 then C ι
τ
Jcom1K(σ) else C ι

τ
Jcom2K(σ)

C ι
τ
Jwhile exp do comK(σ) =δ(σ) where δ is the least fixpoint of

λw.λσ . if σ̂e(ρ) ≠ 0 then w(C ι
τ
JcomK(σ)) else σ

C ι
τ
Jreturn expK(σ) =⟨σ̂ [out → σ̂e(ρ)], σ̌e⟩

C ι
τ
Jcom1; com2K(σ) =C ι

τ
Jcom2K(C ι

τ
Jcom1K(σ))

Fig. 3. Denotations for expressions and commands. The state σe is Eι
τ JexpK(σ).

to be called. The concrete denotational semantics of a program is defined as the least fixpoint of the following transformer of
interpretations [8].

Definition 3.1. The denotational semantics of a program P is the least fixpoint (lfp) of the following operator:

TP(ι) = {m → λσ ∈ Σmi .∃τ\out.C ι
ms∪{out}

r
mb

z
(extend(σ ,m)) |m ∈ P}

where extend(σ ,m) = ⟨σ̂ [∀v ∈ ml
∪ {out}.v → 0/null], σ̌ ⟩.

The denotation for a method signature m ∈ P is computed by the above operator as follows: (1) it extends (using
extend(σ ,m)) the input state σ ∈ Σmi such that local variables are set to 0 or null, depending on their type; (2) it computes
the denotation of the code ofm (using C ι

ms∪{out}

r
mb

z
); and (3) it restricts the resulting denotation to the output variable out

(using ∃τ\out).

4. The abstract domain

The acyclicity analysis discussed in this paper works on the reduced product [12] of two abstract domains, according to
the theory of Abstract Interpretation [11]. The first domain capturesmay-reachability, while the second deals with themay-
be-cyclic property of variables. Both are based on the notion of reachable heap locations, i.e., the part of the heap which can
be reached from a location by accessing object fields.

Definition 4.1 (Reachable Heap Locations [26]). Given aheapµ, the set of reachable locations from ℓ ∈ dom (µ) isR(µ, ℓ) =
∪{Ri(µ, ℓ) | i ≥ 0}, where R0(µ, ℓ) = rng (µ(ℓ).frm)∩L, and Ri+1(µ, ℓ) = ∪{rng (µ(ℓ′).frm)∩L | ℓ′ ∈ Ri(µ, ℓ)}. The set
of ε-reachable locations from ℓ ∈ dom (µ) is Rε(µ, ℓ) = R(µ, ℓ) ∪ {ℓ}.

Note that ε-reachable locations include the source location ℓ itself, while reachable locations do not (unless ℓ is reachable
from itself through a cycle whose length is at least 1). The rest of this section is developed in the context of a given type
environment τ .

4.1. Reachability

Given a state σ ∈ Στ , a reference variable v ∈ τ is said to reach a reference variable w ∈ τ in σ if σ̂ (w) ∈ R(σ̌ , σ̂ (v)).
This means that, starting from v and applying at least one dereference operation (i.e., going from the location pointed to by v
to the location pointed to by v.f for some field f), it is possible to reach the object to which w points. Due to strong typing,
τ puts some restrictions on reachability; i.e., it might be impossible to have a heap where a variable of type κ1 reaches one
of type κ2. Following Secci and Spoto [28], a class κ2 ∈ K is said to be reachable from κ1 ∈ K if there exist σ ∈ Στ , and two
locations ℓ, ℓ′ ∈ dom (σ̌) such that (a) σ̌ (ℓ).tag = κ1; (b) σ̌ (ℓ′).tag = κ2; and (c) ℓ′ ∈ R(σ̌ , ℓ). The use of this notion (as
well as the notion of cyclic class introduced in Section 4.2 and used in Definition 4.5) in the definition of the reachability and
cyclicity domains allows us to obtain the needed Galois insertions. It must be pointed out that both notions can be computed
statically, so that they can be assumed to be pre-computed information.

6 S. Genaim, D. Zanardini / Theoretical Computer Science () –

Definition 4.2 (Reachability Domain). The reachability abstract domain is the complete lattice Iτ
r = ⟨℘(Rτ),⊆,∅, Rτ ,∩,

∪⟩, where

Rτ
=

v w

 v, w ∈ dom (τ), and there exist κ1≼τ(v) and κ2≼τ(w)
such that κ2 is reachable from κ1

.

Here and in the following, elements of the tuple ⟨A,≤,⊥,⊤,∧,∨⟩ denoting an abstract domain A represent, respectively,
(A) the set of abstract values, (≤) the partial order on them, (⊥) the minimal (bottom) element of A, (⊤) the maximal (top)
element of A, (∧) the meet operator and (∨) the join operator on A. This terminology is standard in Abstract Interpretation.
May-reach information is described by abstract values Ir ∈ ℘(Rτ). For example, {x z, y z} describes those states where x
and y may reach z. Note that a statement x y does not prevent x and y from aliasing; instead, x can reach y and alias with it
at the same time, e.g., when x, y, and x.f point to the same location.
Lemma 4.3. The following abstraction and concretization functions define a Galois insertion between Iτ

r and Iτ
♭ :

ατ
r (I♭) = {v w ∈ Rτ

| ∃σ ∈ I♭.v reaches w in σ }
γ τ
r (Ir) = {σ ∈ Στ | ∀v, w ∈ τ . v reaches w in σ ⇒ v w ∈ Ir}.

The top element Rτ is ατ
r (Στ), and represents all states which are compatible with τ . This is because the presence of a

reachability statement in an abstract value I does not require a reachability path to actually exist; rather, the concretization
of I will include states where the path does exist, and states where it does not (this is the meaning of ‘‘may-information’’).
In other words, the absence of a reachability statement in the abstract state requires non-existence of a reachability path in
its concretization.

The bottom element ∅models the set of all states where, for every two reference variables v and w (possibly the same
variable), v does not reach w. Note that, clearly, this set is not empty, and that the absence of a reachability statement
actually rules out states where the reachability path exists.
Remark 4.4. Intuitively, reachability is a transitive property; i.e., if x reaches y and y reaches z, then x also reaches z. However,
values in Iτ

r are not closed by transitivity: e.g., it is possible to have Ir = {x y, y z} which contains x y and y z, but not
x z. Such an abstract value is a reasonable one, and approximates, for example, the execution of the following code

1 x:=new C;
2 y:=new C;
3 if (w>0) then x.f:=y; else y.f:=z;

Moreover, this abstract value is consistent, i.e., it describes a set of concrete stateswhich is not smaller (actually, it is greater)
than γ τ

r (∅). This happens because reachability is, actually, may-reach information, so that, for example, γ τ
r ({x y, y z})

includes (a) any state where x reaches y but y does not reach z; (b) any state where y reaches z but x does not reach y; and (c)
any state where x does not reach y and y does not reach z. It is important to point out that γ τ

r ({x y, y z}) does not contain
those states where both x reaches y and y reaches z, since, in this case, xwould also reach z by transitivity, which is forbidden
by soundness since x z /∈ Ir .

4.2. Cyclicity

Given a state σ ∈ Στ , a variable v ∈ dom (τ) is said to be cyclic in σ if there exists ℓ ∈ Rε(σ̌ , σ̂ (v)) such that ℓ ∈ R(σ̌ , ℓ).
In other words, v is cyclic if it reaches some memory location ℓ (which can possibly be σ̂ (v) itself) through which a cyclic
path goes. Similarly to reachability, it might be impossible to generate a cyclic data structure starting from a variable of
some type κ . A class κ ∈ K is said to be a cyclic class if there exist σ ∈ Στ and ℓ, ℓ′ ∈ dom (σ̌) such that σ̌ (ℓ).tag = κ ,
ℓ′ ∈ Rε(σ̌ , ℓ), and ℓ′ ∈ R(σ̌ , ℓ′). The cyclicity domain is the dual of the non-cyclicity domain by Rossignoli and Spoto [26].
Definition 4.5 (Cyclicity Domain). The abstract domain for cyclicity is represented as the complete lattice Iτ

c =

⟨℘(Yτ),⊆,∅, Yτ ,∩,∪⟩where
Yτ
= {	v

| v ∈ τ , and there exists a cyclic class κ ≼ τ(v)}.

Lemma 4.6. The following abstraction and concretization functions define a Galois insertion between Iτ
c and Iτ

♭

ατ
c (I♭) = {	

v
| ∃v ∈ τ . ∃σ ∈ I♭. v is cyclic in σ }

γ τ
c (Ic) = {σ | σ ∈ Στ ∧ ∀v ∈ τ . (v is cyclic in σ)⇒ 	v

∈ Ic}.

May-be-cyclic information is described by abstract values Ic ∈ ℘(Yτ). For instance, {	x} represents states where no variable
but x can be cyclic. The top elementYτ is concretized toΣτ ; i.e., all state are included since each variable can be either cyclic
or acyclic. The bottom element ∅ does not allow any variable to be cyclic, i.e., its concretization does not include any state
with cyclic variables.

4.3. The reduced product

As it will be explained in Section 5, the abstract semantics uses reachability information in order to detect cycles, and
cyclicity information in order to add, in some cases, reachability statements. Both kinds of information can be combined:

S. Genaim, D. Zanardini / Theoretical Computer Science () – 7

in the theory of Abstract Interpretation; this amounts to computing the reduced product [12] of the corresponding abstract
domains. In thepresent context, the reducedproduct is obtainedby reducing the CartesianproductIτ

rc = Iτ
r×Iτ

c . Elements of
Iτ
rc are pairs ⟨Ir , Ic⟩, where Ir and Ic contain, respectively, the may-reach and the may-be-cyclic information. The abstraction

and concretization functions are induced by those on Iτ
c and Iτ

r :

γ τ
rc(⟨Ir , Ic⟩) = γ τ

r (Ir) ∩ γ τ
c (Ic) ατ

rc(I) = ⟨α
τ
r (I), α

τ
c (I)⟩.

However, it can happen that two elements of Iτ
rc are mapped to the same set of concrete elements, which prevents having

a Galois insertion between Iτ
rc and Iτ

♭ . The operation of reduction deals exactly with this problem. In order to compute it,
an equivalence relation ≡ has to be defined, which satisfies I1rc ≡ I2rc is and only if γ τ

rc(I
1
rc) = γ τ

rc(I
2
rc). Functions γ τ

rc and
ατ
rc define a Galois insertion between Iτ

rc≡ and Iτ
♭ , where Iτ

rc≡ is Iτ
rc equipped (reduced) with the equivalence relation. The

following lemma characterizes the equivalence relation on Iτ
rc .

Lemma 4.7. For any abstract values I1r , I
2
r ∈ Iτ

r and I1c , I
2
c ∈ Iτ

c , the concretization γ τ
rc(⟨I

1
r , I

1
c ⟩) is equal to γ τ

rc(⟨I
2
r , I

2
c ⟩) if and

only if both conditions hold: (a) I1c = I2c ; and (b) I1r \ {v v | 	v /∈ I1c } = I2r \ {v v | 	v /∈ I2c }.

This above lemmameans that: (a)may-be-cyclic information alwaysmakes a difference as regards the set of concrete states;
that is, adding a new statement	v to Irc ∈ Iτ

rc results in representing a strictly larger set of states; and (b) adding a pair v v
to Irc ∈ Iτ

rc , when v cannot be cyclic, does not make it represent more concrete states, since the acyclicity of v excludes that
it can reach itself.

Example 4.8. As an example for case (a), consider two abstract values I1rc = ⟨Ir ,∅⟩ and I2rc = ⟨Ir , {	
x
}⟩ which result from

adding 	x to I1rc . Assuming that x does not appear in Ir , there is a state σ which is compatible with Ir (for example, if no v
reaches any w in σ), and where x is cyclic (note that this does not require x to reach any other variable, not even itself, since
the cycle does not need to go through σ̂ (x)). This σ belongs to γ τ

rc(I
2
rc)\γ

τ
rc(I

1
rc) and is, therefore, an example of the difference

between the abstract values.
As an example for (b), consider I1rc = ⟨∅, {	

y
}⟩ and I2rc = ⟨{x x}, {	y}⟩ which results from adding x x to I1rc . At a first

glance, I2rc describes a larger set of states, since it includes states (not belonging to γ τ
rc(I

1
rc)) where there is a path from x to

x. However, such states will neither belong to γ τ
rc(I

2
rc), since such a path implies that x is cyclic, which is not permitted by

{	y}, that only allows y to be cyclic.

Lemma 4.7 provides a way for computing the normal form of any ⟨Ir , Ic⟩, which comes to be ⟨Ir \ {v v|	v /∈Ic}, Ic⟩, i.e., the
canonical form of its equivalence class. From now on, Iτ

rc will be a shorthand for Iτ
rc≡, where≡ is left implicit.

5. Reachability-based acyclicity analysis

This section uses Iτ
rc to define an abstract semantics from which one can decide whether a variable v is (or may not be)

bounded to an acyclic data structure at a given program point. Informally, two variables v and w are said to share in a state
σ if they ε-reach (i.e., in zero or more steps) a common location in the heap. The analysis is based on the observation that
reachability information can tell how v and w share: this can happen because either (a) v and w alias; (b) v reaches w;
(c) w reaches v; or (d) they both reach ℓ ∈ dom (σ̌). Distinguishing among these four possibilities is crucial for a precise
acyclicity analysis. In fact, assuming that v and w are initially acyclic, they both become cyclic after executing v.f:=w if and
only if, initially, w either reaches v or aliases with it. This is clearly more precise than declaring v as cyclic whenever it
was sharing with w [26]. The presented analysis is an adaptation of the work by Ghiya and Hendren [17] to an object-
oriented framework, where the chosen formalism is that of an abstract semantics on the domain described in Section 4.
Some optimizations w.r.t. the original analysis are also discussed.

The rest of this section formalizes the reachability-based analysis as an abstract semantics on Iτ
rc , and proves some

important results.

5.1. Preliminaries

May-share [28],may-alias [21] and purity [14] analyses are used as pre-existent components, i.e., programs are assumed to
have been analyzed w.r.t. these properties bymeans of state-of-the-art tools.2 Two reference variables v andw share in σ iff
Rε(σ̌ , σ̂ (v))∩ Rε(σ̌ , σ̂ (w)) ≠ ∅; also, they alias in σ if they point to the same location, namely, if σ̂ (v) = σ̂ (w) ∈ dom (σ̌).
Any non-null reference variable shares and aliases with itself; also, both are symmetric relations. The i-th argument of a
method m is said to be pure if m does not update the data structure to which the argument initially points. For sharing and
purity, the analysis proposed by Genaim and Spoto [14] (based on previous work by Secci and Spoto [28]) can be applied:
with it,

2 One could argue that aliasing and sharing analyses benefit from reachability information, so that all the components should better work ‘‘in parallel’’;
however, for the sake of this presentation, the three components (sharing, aliasing, and reachability-cyclicity) are supposed to be independent. See
Section 5.4 for a further discussion about the interplay between all the analyses.

8 S. Genaim, D. Zanardini / Theoretical Computer Science () –

(1e) E τ
ζ

JnK(I) = I
(2e) E τ

ζ
JnullK(I) = I

(3e) E τ
ζ

Jnew κK(I) = I
(4e) E τ

ζ
JvK(I) = if τ(v)=int then I else I ∪ I[v/ρ]

(5e) E τ
ζ

Jv.f K(I) = if f has type int then I else I ∪ I ′ where
I ′=I[v/ρ] ∪ {w ρ|⟨w•v⟩∈Is} ∪ {ρ ρ | 	v

∈ I}
(6e) E τ

ζ

q
exp1 ⊕ exp2

y
(I) = ∃ρ.E τ

ζ

q
exp2

y
(∃ρ.E τ

ζ

q
exp1

y
(I))

(7e) E τ
ζ

Jv0.m(v1, .., vn)K(I) = I ∪ Im ∪ I3 ∪ I4 where
v̄={v0, .., vn}

I0=∃(τ\v̄).I
Im = ∪ { (ζ (m)(I0[v̄/mi

]))[mi/v̄, out/ρ] |m might be called herea }
I ′s = {⟨vi•vj⟩ | vi, vj ∈ v̄ and ⟨vi•vj⟩ ∈ Is} ∪ {v̇|v ∈ v̄ and v̇ ∈ Is}
I ′′s = ∪{SPm(I ′s[v̄/mi

])[mi/v̄, out/ρ] |m might be called here}
I1 = {w1 w2 | (vi vj∈Im) ∧ (v̇i∈I ′′s) ∧ (⟨w1•vi⟩∈I ′s)∧

((vj w2∈I) ∨ ⟨w2·vj⟩∈I ′s)}
I2 = {w1 w2 | (⟨vi•vj⟩ ∈ I ′s) ∧ (v̇i ∈ I ′′s) ∧ (⟨vi•w1⟩ ∈ I ′s) ∧ (vj w2 ∈ I)}
I3 = ∪{(I1∪I2)[v/ρ] | ⟨v·ρ⟩ after the call }
I4 = {	w

| (⟨w•v⟩ ∈ I ′s) ∧ (v̇ ∈ I ′′s) ∧ (v
∈ Im)}

a See Section 5.2.5

Fig. 4. Abstract denotations for expressions.

1. it is possible to know if v may share with w at any program point (denoted by the sharing statement ⟨v•w⟩); and
2. for each method m, a denotation SPm is given: for a set of pairs Isp which safely describes the sharing between actual

arguments in the input state, I ′sp = SPm(Isp) is such that (i) if ⟨v•w⟩ ∈ I ′sp, then v and w might share during the execution
of m; and (ii) v̇i ∈ I ′sp means that the i-th argument might be non-pure.

According to the theory of Abstract Interpretation and to previous work, sharing and purity analysis can be defined as an
abstract semantics over the abstract domain Iτ

sp, whose elements Isp containmay-share statements ⟨v•w⟩ andmay-be-non-
pure statements v̇. Abstraction and concretization functions αsp and γsp are defined in the standard way [14]: in particular,
γsp(Isp) contains all the states where variables mentioned in sharing statements are the only ones which can possibly share
between themselves, while variables mentioned in may-be-non-pure statements are the only ones which can possible be
non-pure.

As for aliasing, the abstract domain Iτ
al contains sets of may-alias statements ⟨v·w⟩: if ⟨v·w⟩ is contained in Ial, then its

concretization γal(Ial) contains states where v and w actually alias and states where they do not. It is assumed that this
information is available at each program point as a set of may-alias statements.

In the following, the domain Iτ
s will be the reduced product between Iτ

sp and Iτ
al, and combines sharing, aliasing, and

purity information. As usual, γs((Isp, Ial)) is defined as γsp(Isp) ∩ γal(Ial), while αs(X) is defined as (αsh(X) ∪ αal(X))≡, where
≡means that abstract elements with the same concretization have been unified (i.e., the product has been reduced).

Abusing notation, from now on Is will be often used to denote an abstract value without specifying the abstract domain it
belongs to. The use of Is will be clear from the context: for example, writing γal(Is) means applying γal to the part of Is which
represents aliasing information.

Moreover, an abstract element ⟨Ir , Ic⟩ ∈ Iτ
rc will be represented by the set I = Ir ∪ Ic ; therefore, v w ∈ I and 	v

∈ I
are shorthands for, respectively, v w ∈ Ir and 	v

∈ Ic . The operation ∃v.I (projection) removes any statement about v
from I , while I[v/w] (renaming) v to w in I . For the sake of simplicity, class-reachability and class-cyclicity are taken into
account implicitly: a new statement v w is not added to an abstract state if v w ∉ Rτ , while a statement 	v is not
added if 	v

∉ Yτ . It is important to point out that information about class-reachability and class-cyclicity (i.e., whether κ1
reaches κ2, or whether κ is cyclic) can be computed statically and before performing any acyclicity analysis. Therefore, it
can be assumed that such information is available whenever it is necessary to decide whether a new reachability or cyclicity
statement belongs or not to Rτ or Yτ .

5.2. The abstract semantics

An abstract denotation ξ from τ1 to τ2 is a partial map from I
τ1
rc to I

τ2
rc . It describes how the abstract input state changes

when a piece of code is executed. The set of all abstract denotations from τ1 to τ2 is denoted by Ξ(τ1, τ2). As in the
concrete setting, interpretations provide abstract denotations for methods in terms of their input and output arguments.
An interpretation ζ maps methods to abstract denotations, and is such that ζ (m) ∈ Ξ(mi,mi

∪ {out}). Note that the range
of such denotations is mi

∪ {out}, instead of {out} (as in the concrete semantics): this point will get clarified below. Finally,
Ψ denotes the set of all (abstract) interpretations.

Figs. 4 and 5 depict abstract denotations. An expression denotation E τ
ζ
JexpKmaps abstract states from Iτ

rc to abstract states
from I

τ1
rc where τ1 = τ ∪ {ρ}, while a command denotation Cτ

ζ
JcomK maps Iτ

rc to Iτ
rc .

S. Genaim, D. Zanardini / Theoretical Computer Science () – 9

(1c) Cτ
ζ
Jv:=expK(I) = (∃v.E τ

ζ
JexpK(I))[ρ/v]

(2c) Cτ
ζ
Jv.f :=expK(I) = ∃ρ.(I ′ ∪ Ir ∪ Ic) where

I ′0 = E τ
ζ

JexpK(I)
I ′ = condRemove(I ′0, v, f)
Ir =

w1 w2 | ((⟨w1·v⟩∈I ′s) ∨ (w1 v∈I ′)) ∧

((⟨ρ·w2⟩∈I ′s) ∨ (ρ w2∈I ′))

Ic =

	w
| ((ρ v ∈ I ′) ∨ (⟨ρ·v⟩∈I ′s) ∨ (ρ

∈I ′)) ∧
((⟨w·v⟩∈I ′s) ∨ (w v∈I ′))

(3c) Cτ

ζ

t
if exp then com1

else com2

|

(I) = Cτ
ζ
Jcom1K(I) ∪ Cτ

ζ
Jcom2K(I)

(4c) Cτ
ζ
Jwhile exp do comK(I) = ξ(I) where ξ = lfp(λw.λI.w(Cτ

ζ
JcomK(I)))

(5c) Cτ
ζ
Jreturn expK(I) = E τ

ζ
JexpK(I)[ρ/out]

(6c) Cτ
ζ
Jcom1; com2K(I) = Cτ

ζ
Jcom2K(C

τ
ζ
Jcom1K(I))

Fig. 5. Abstract denotations for commands.

In the definition, the abstract element Is contains the sharing, aliasing, and purity information pre-computed by other
analyses, and referring to the program point of interest.3

5.2.1. Expressions
An expression denotation E τ

ζ
JexpK adds to an input state I those reachability and cyclicity statements which result from

evaluating exp.
Nothing is added to I in cases (1e): E

τ
ζ
JnK, (2e): E

τ
ζ
JnullK, and (3e): E

τ
ζ
Jnew κK since the expression is evaluated without

side effects to, respectively, an integer value, null, or a newly allocated object which is not related to any other location with
respect to reachability.

The same reasoning explainswhy the returned abstract value is also I in case (4e): E
τ
ζ
JvKwhen τ(v)=int, and (5e): E

τ
ζ
Jv.f K

when f is an int field.
In case (4e): E

τ
ζ
JvK, when the type of v is not int, the result variable ρ has the same abstract behavior as v. Therefore,

the semantics returns I , together with a cloned version I[v/ρ] where statements about v have been replaced by renamed
statements about ρ.

In the case of (5e): E
τ
ζ
Jv.f K, when f is a reference field, the following information is added to I:

• statements for v which are cloned for ρ;
• w ρ, ifw might share with v; note that v ρ is always added since ⟨v•v⟩ ∈ Is (clearly, v cannot be null); if v andw reach

a common location (which implies that they share), but do not reach each other, then, conservatively, the reachability
statement w ρ must be added because v.f could be exactly the common location which is reached by both v and w;
• if v might be cyclic, then, for soundness, ρ ρ; note that, in this case,	ρ is also guaranteed to have been previously added

to the abstract state.

In case (6e): E
τ
ζ

q
exp1 ⊕ exp2

y
, the expression exp1 is first analyzed, then exp2 is analyzed on the resulting abstract state.

Note that, in both cases, ρ is removed since the return value has always type int.
Finally, method calls (7e): E

τ
ζ
Jv0.m(v1, .., vn)K will be explained later, after introducing denotations for commands.

Example 5.1. Consider c:=c.next at line 15 in Fig. 1. Evaluating the denotation E τ
ζ
Jc.nextK(I14) results in {this c, this p,

this ρ, c ρ, p ρ}. The statement this ρ is added since this c ∈ I14; c ρ and p ρ are added because ⟨c•c⟩ and ⟨c•p⟩
hold after line 14.

5.2.2. Variable assignment
The denotation (1c): C

τ
ζ
Jv:=expK computes E τ

ζ
JexpK(I), removes any statement about v since it takes a new value, and

finally renames ρ to v. Note that it is safe to remove statements about v since it is first cloned to ρ.

Example 5.2. Consider, again, line 15 in Fig. 1. Evaluating the denotation Cτ
ζ
Jc:=c.nextK(I14) first computes E τ

ζ
Jc.nextK(I14) as

in Example 5.1. Then, statements involving c are removed,which results in {this p, this ρ, p ρ}, and, finally,ρ is renamed
to c , giving {this p, this c, p c}. Note that this c is reinserted (by renaming this ρ) after being deleted by ∃c . Also, note
that c ρ has been removed by ∃c , so that, correctly, c is not considered to reach itself after the assignment.

3 Note that Is could be represented explicitly as an input to the abstract semantics, next to I , but it is not written for better clarity.

10 S. Genaim, D. Zanardini / Theoretical Computer Science () –

5.2.3. Field update
The denotation (2c): C

τ
ζ
Jv.f :=expK accounts for field updates. The set I ′0 results from computing E τ

ζ
JexpK(I), as usual.

The following step is to apply an optimization (called the single-field optimization in the following) which allows removing
statements after inspecting the declarations of the classes involved in the update. The abstract value I ′ is computed from
I ′0 by the function condRemove(I ′0, v, f), which is defined as follows. Let κ be the declared class of v (this means that the
runtime type of v can be κ or any of its subclasses); then I ′ is obtained by I ′0 by

• removing 	v if (1) f is the only reference field of any κ ′ ≼ κ; or (2) all the other reference fields of any κ ′ ≼ κ have a
declared class such that neither it nor any of its subclasses are a cyclic class;
• similarly, removing any statement v w such that f is the only field of any κ ′ ≼ κ whose declared class κf (or any of its

subclasses) reaches the declared class of w (or any of its subclasses);
• leaving all the statements in I ′0 if these conditions do not hold.

Basically, this single-field optimization identifies cases where the only cycles or reachability paths starting from v must
forcefully traverse f , either because f is the only field, or because no other field makes such cycles or paths possible. It must
be pointed out that this optimization relies on information about classes and fields which can be obtained statically by code
inspection, and was not included in the original analysis of Ghiya and Hendren [17]. The sets Ir and Ic capture the effect of
executing v.f :=ρ on I ′. Moreover, I ′s contains sharing, purity and aliasing information after evaluating exp.

The following reachability statements are added: for any w1 which might either alias with v or reach v (formalized as
(⟨w1·v⟩ ∈ I ′s)∨ (w1 v ∈ I ′)), and any w2 aliasing with ρ or reachable from it (formalized as (⟨ρ·w2⟩ ∈ I ′s)∨ (ρ w2 ∈ I ′)),
the statement w1 w2 is added since the new path created by the update implies that w1 can reach w2. This accounts for all
possible paths which can be created by adding a direct link from v to ρ through f .

New cyclicity statements are contained in Ic . There are three possible scenarios where v might become cyclic:

• ρ reaches v, so that a cycle from v to itself is created;
• ρ aliases with v, so that v reaches itself with a path of length 1 (e.g., the command y.f:=y); or
• ρ is cyclic, so that v becomes indirectly cyclic.

Whenever one of these scenarios occurs (formalized as (ρ v ∈ I ′)∨ (⟨ρ·v⟩ ∈ I ′s)∨ (ρ
∈ I ′)), any variable w aliasing with

v or reaching it (formalized as (⟨w·v⟩ ∈ I ′s) ∨ (w v ∈ I ′)) has to be considered as possibly cyclic.

Example 5.3. Consider line 20 in Fig. 1. The abstract value before such a line, produced at line 17, is I17 =

{this c, this p, p c, n c}. The evaluation of Cτ
ζ
Jp.next:=nK(I17) at line 20 adds a new statement p n, as expected.

Moreover, it also adds this n since this was reaching p, and both p c and this c (which, however, were already contained
in I17) since n was reaching c.

5.2.4. Conditions, loops, composition, and return command
Rules (3c):C

τ
ζ
Jif exp then com1 else com2K, (4c):C

τ
ζ
Jwhile exp do comK, and (6c):C

τ
ζ
Jcom1; com2K are quite straightforward

and correspond, respectively, to the if conditional, thewhile loop, and command composition. Finally, rule (5c):C
τ
ζ
Jreturn expK

corresponds to the return command, and behaves, as expected, like the execution of out :=exp.

5.2.5. Method calls
Rule (7e): E

τ
ζ
Jv0.m(v1, .., vn)K propagates the effect of a method call to the calling context, as follows:

1. the abstract state I is projected on the actual parameters v̄, thus obtaining I0; this is needed since the denotation of the
callee is given in terms of its parameters;

2. the denotation of eachmethodmwhich canbepossibly called at runtime is taken from the current interpretation, namely,
ζ (m), and applied to I0[v̄/mi

], which is the result of renaming the actual parameters v̄ to the formal parametersmi in I0;
3. formal parameters are renamed back to the actual parameters (plus out and ρ) in the resulting state ζ (m)(I0[v̄/mi

]), and
the states obtained from all possible signatures are merged into Im.

Step 2 takesmore than onemethod into account because, in anObject-Oriented languagewith inheritance, it is in general
not possible to decide, at compile-time, which method instance (among various method declarations whose signature is
compatible with the type of the actual parameters and the expected return value) will be actually invoked after calling the
function lkp (Section 3). Therefore, the abstract semantics takes, conservatively, the union of all of them.

In the definition, I ′s is a safe approximation of the sharing among actual parameters, and I ′′s safely approximates the sharing
and purity information after the method call. The definitions of I1, I2, I3, and I4 account for the propagation of the effects of
the method execution in the calling context:

• I1 states that, if the call creates reachability from vi to vj, then any w1 sharing with vi before the call might reach any w2
which is reachable from vj or aliasing with vj. Note that adding these statements is necessary only if vi is updated in the
body of some m (this information is conservatively represented in I ′′s , so that the condition v̇i ∈ I ′′s must be checked):
otherwise, it is guaranteed that no path from w1 to w2 will be created during the call.

S. Genaim, D. Zanardini / Theoretical Computer Science () – 11

1 Node f(Node a,Node b,Node c) {
2 a.next:=b;
3 c.next:=this;
4 return b.g(c);
5 }

1 Node g(Node y) {
2 this.next:=y;
3 return this;
4 }

1 Node h(Node y) {
2 this.next:=y;
3 y:=null;
4 return this;
5 }

1 Node k(Node y) {
2 u:=y;
3 this.next:=y;
4 y:=null;
5 return this;
6 }

Fig. 6. Some more examples.

• I2 states that, if the call makes vi share with vj, then any w1 sharing with vi might reach any w2 reachable from vj. Again,
this is required only if vi is updated in the body of any m.
• I3 contains the information about any variable v aliasing with ρ, which is cloned for ρ.
• I4 will include the possible cyclicity of anything sharing with an argument which might become cyclic.

The final result of processing a method call is the union I ∪ Im ∪ I3 ∪ I4.

Example 5.4. Consider methods f and g of Fig. 6, and assume that both are defined in the class Node. Let ξ be a denotation
for g such that ξ(∅) = {this y, out y}. This example shows how an abstract state ∅ is transformed by executing the code
of f. The first two commands in f transform ∅ into I = {a b, c this}. Then, the denotation of g is plugged into the calling
context, as follows:

1. I is projected on {b, c}, obtaining I0 = ∅;
2. ξ(∅) is renamed such that this, y, and out are renamed to, respectively, b, c , and ρ, and Im = {b c, ρ c} is obtained;
3. a this is added to I1 since (b c ∈ Im) ∧ (⟨b•a⟩ ∈ I ′s) ∧ (c this ∈ I) is true; similarly, b this, a c and a ρ are also

added to I1;
4. no new statements have to be added because of I2 or I3;
5. I4 is empty since nothing becomes cyclic in g;
6. finally, the denotation of return renames ρ to out in I ∪ Im ∪ I1 ∪ I4, and obtains {a b, c this, b c, out c, a this, a c,

b this, a out}.

Next, the inference of a denotation for a method m is shown, which uses the denotation Cτ
ζ

r
mb

z
of its code. Example 5.5

introduces the problems to be faced when trying to define a method denotation, and a solution is discussed below.

Example 5.5. In Example 5.4, when analyzing b.g(c), the existence of a denotation ξ for g such that ξ(∅) = {this y, out y}
was assumed. Intuitively, this ξ(∅) could be computed usingCτ

ζ

r
gb

z
, as follows: the first command in g adds this y, and the

second one adds out y, which results in the desired abstract state {this y, out y}. After this result, one might think that
Cτ

ζ

r
mb

z
(I) is always the good way to compute ξ(I), as just done. Yet, in general, this is not correct. For example, suppose

the call b.g(c) is replaced by b.h(c) (which is defined in Fig. 6 also). The effect of this call should be the same as b.g(c), since
both methods make b reach c and b reach the return value. However, computing Cτ

ζ

r
hb

z
(∅) has a different result: the

first instruction adds this y, but the second one removes it since the value of y is overwritten, and the third does not add
anything. Therefore, Cτ

ζ

r
hb

z
(∅) = ∅, which is not sound to use as the result of ξ(∅).

The problem in Example 5.5 comes from the call-by-value passing style for parameters, where, if the formal parameters
are modified in the method, then the final abstract state does not describe the actual parameters anymore. This is why
the expected reachability information is obtained for f (since it does not modify y), while it is not in the case of h (since y
is modified in the body). A common solution to this problem is to mimic actual parameters by shallow variables or ghost
variables, i.e., new auxiliary variables which are initialized when entering the method to the same values as the parameters,
but are never modified in the body.

Example 5.6. Consider methods h and k in Fig. 6. Method k is the result of instrumenting h with a shallow variable u,
mimicking y. It is easy to verify that Cτ

ζ

r
kb

z
(∅) comes to be {this u, out u}, which includes the desired reachability

information.

The following definition defines the abstract denotational semantics of a program P as the least fixpoint of an (abstract)
transformer of interpretations. Variables ū play the role of shallow variables. Note that shallow variables appear at the level
of the semantics, rather than by transforming the program.

12 S. Genaim, D. Zanardini / Theoretical Computer Science () –

Definition 5.7. The abstract denotational semantics of a program P is the lfp of the transformer

TP(ζ) = {m → λI ∈ Imi

rc (∃X .Cτ
ζ

r
mb

z
(I ∪ I[w̄/ū]))[ū/w̄] | m ∈ P }

wheremi
= {this, w1, . . . , wn}, and ū is a variable set {u1, . . . , un} such that ū∩ms

= ∅; moreover, dom (τ) = ml
∪ ū, and

X = dom (τ)\(ū ∪ {this, out}).

The definition is explained in the following. The operator TP transforms the interpretation ζ by assigning a new denotation
for each method m ∈ P , using those in ζ . The new denotation for m maps a given input abstract state I ∈ Imi

rc to an output

state abstract from I
mi
∪{out}

rc , as follows:
1. it obtains an abstract state I0 = I ∪ I[w̄/ū] in which the parameters w̄ are cloned into the shallow variables ū;
2. it applies the denotation of the code of m on I0, obtaining I1 = Cτ

ζ

r
mb

z
(I0);

3. all variables but ū ∪ {this, out} are eliminated from I1 (using ∃X); and
4. shallow variables ū are finally renamed back to w̄.

Soundness is addressed in Section 5.3, next we see some examples.
Example 5.8. Consider the following method
1int mirror(Tree t) {
2 Tree l,r;
3

4 if (t=null) then {
5 return 0;
6 } else {
7 l:=t.left;
8 r:=t.right;
9 t.left:=r;

10 t.right:=l;
11 return 1+mirror(l)+mirror(r);
12 }
13}

and suppose that class Tree implements binary trees in the standardway, with fields left and right. The callmirror(t) exchanges
the values of left and right of each node in t, and returns the number of nodes in the tree. An initial state ∅ is transformed by
mirror as follows. Suppose that the current interpretation ζ is such that ζ (mirror) = ξ , and ξ(∅) = ∅. The first branch of the
if (when t is null) does not change the initial denotation; on the other hand, when t is different from null, line 7 adds t l; line
8 adds t r; line 9 adds again t r; and line 10 adds again t l. Recursive callsmirror(l) andmirror(r) do not add any statement
since ξ(∅) = ∅. Finally, return adds nothing. Projecting {t l, t r} on t and out results in ∅, so that ξ(∅) does not change,
and there is no need for another iteration. It can be concluded that, as expected, mirroring the tree does not make it cyclic.

Example 5.9. Consider the following method
1Node connect() {
2 Node curr;
3

4 curr=this;
5 while (curr.next!=null) {
6 curr:=curr.next;
7 }
8 curr.next:=this;
9 return curr;

10}

and assume it is defined in the classNode. A call l.connect()with l acyclicmakes the last element of lpoint to l, so that it becomes
cyclic. It also returns a reference to the last element in the list. An initial state ∅ is transformed by connect as follows. Line 4
does not add any statements, while line 6 in the loop adds this curr . Another iteration of the loop does not change anything,
so that the loop is exited with {this curr}. Since this is now reaching curr, line 8 adds {curr this, curr curr, this this}, and
{	curr ,	this

}. Finally, line 9 clones curr to out . In conclusion, the analysis correctly infers that l.connect()makes l and the return
value cyclic.

5.3. Soundness

This section present the soundness theorem: the abstract state obtained by applying the abstract semantics to a method
in a given input abstract state is a correct representation of (i.e., its concretization contains) the concrete state obtained by
executing the method in any input concrete state which is correctly represented by such input abstract state. The proof of
the theorem can be found in Appendix A.4.

S. Genaim, D. Zanardini / Theoretical Computer Science () – 13

Theorem 5.10 (Soundness). Let P be a program, and ι and ζ be, respectively, its concrete and abstract semantics according to
Definitions 3.1 and 5.7. Moreover, let m be a method in P, and let δ = ι(m) and ξ = ζ (m). It holds that, for all σ1 ∈ Σmi ,

σ2 = δ(σ1) ⇒ ⟨σ̂1[out → σ̂2(out)], σ̌2⟩ ∈ γ τ
rc(ξ(ατ

rc({σ1}))).

5.4. Completeness and optimality

Completeness [18] is awell-knownnotion in Abstract Interpretation, and corresponds to require that no loss of precision is
introduced by computing an abstract semantic function on abstract stateswith respect to approximating the same (concrete)
computation on concrete states. An abstract domain A (with abstract function α and concretization function γ) and an
abstract function f # over it are backward-complete for the concrete function f if and only if, for every concrete input σ , the
abstraction α(f (σ)) of a concrete computation is equal to the abstract computation f #(α(σ)). This property guarantees that
α(lfp(f)) = lfp(f #).

By optimality we refer to the fact that the abstract function under study is the best correct approximation of the concrete
function with respect to the associated abstraction: for every I , f #(I) must be equal to α(f (γ (I))).

For the sake of the following discussion, the abstract semantics Cτ
ζ
J_K (a similar discussion holds for E τ

ζ
J_K) is supposed

to use, for collecting sharing, aliasing and purity information, the best correct approximation Sζ
τ J_K of C ι

τ J_K with respect
to Iτ

s : for every command com and abstract value I ∈ Iτ
s , S

ζ
τ JcomK(I) is defined as αs(C ι

τ JcomK(γs(I))). To introduce the
abstract semantics over this domain is necessary in order to be able to properly talk about completeness and optimality of
the reachability and cyclicity analysis, as it will be clear in the following.

Backward completeness. The present analysis is not backward-complete. In the following, the abstract domain under study
will be Iτ

rc ⊓ Iτ
s (i.e., sharing, aliasing and purity are included). Consider the state σ obtained by executing the following

statements, starting from a heap where all variables are null: the final result of the execution is the heap shown in the
picture.

1 y:=new C;
2 z:=new C;
3 y.f:=new C;
4 z.f:=y.f;
5 y.g:=z;

y z

f

f

g

After this code fragment, y and z share because they reach a common location, and y is reaching z. Then, the most precise
approximation of the resulting concrete state σ is I = {⟨y•y⟩, ⟨z•z⟩, ⟨y•z⟩, ⟨y·y⟩, ⟨z·z⟩, y z}.4 Suppose that the statement

6 x:=y.f;

is executed afterward, giving the concrete state σ ′: in this case, the concrete function f under study is the semantic of this
statement, namely, Cζ

τ Jx:=y.fK, and the stateσ ′ corresponds to Cζ
τ Jx:=y.fK(σ). Now, the abstraction ofσ ′with respect toIτ

rc⊓I
τ
s

is

I ′ = {⟨x•x⟩, ⟨y•y⟩, ⟨z•z⟩, ⟨x•y⟩, ⟨x•z⟩, ⟨y•z⟩, ⟨x·x⟩, ⟨y·y⟩, ⟨z·z⟩, y x, y z, z x}

which correctly represents the sharing between the three variables, and the fact that x points exactly to the location which
is reached by both y and z. On the other hand, computing the result of the abstract semantics f # (i.e., the present analysis
Cτ

ζ
Jx:=y.fK) on the input abstract state I gives the state

I ′′ = {⟨x•x⟩, ⟨y•y⟩, ⟨z•z⟩, ⟨x•y⟩, ⟨x•z⟩, ⟨y•z⟩,
⟨x·x⟩, ⟨y·y⟩, ⟨z·z⟩, ⟨x·y⟩, ⟨x·z⟩, ⟨y·z⟩, y x, y z, z x, x z}.

The reachability statement x z is added because the analysis admits that, since y is said to reach z, the location pointed to
by x could be exactly on the path from y to z. Because of the difference between I ′ and I ′′, this counterexample is enough to
prove the lack of backward completeness.

Optimality. This section argues that two important abstract state transformers included in the abstract semantics are
optimal. The considered transformers are f #1 = E τ

ζ
Jv.f K for field access, which is optimal with respect to f1 = Eι

τ Jv.f K,
and f #2 = Cτ

ζ
Jv.f :=ρK for field updates, which is optimal with respect to f2 = C ι

τ Jv.f :=ρK. The use of ρ means that the state
transformers account for the field update after the expression exp has been evaluated. In other words, f2 will be applied to
the concrete state resulting from evaluating exp, and f #2 will be applied to the abstract state I ′0 described in Fig. 5. In order to
avoid confusion with names, let J be the abstract value which is given as input to the abstract state transformer, and let J1
the corresponding output; therefore, J ′ and similar names will play the same role as I ′ and similar names in Fig. 5.

Again, the abstract domain includes sharing, aliasing and purity, so that the concretization and abstraction functions γ
and α are the ones which are induced by the reduced product Iτ

rc ⊓ Iτ
s in the standard way. This means that optimality is

4 The notation ⟨_•_⟩ and ⟨_·_⟩ is used in the beginning of Section 5.

14 S. Genaim, D. Zanardini / Theoretical Computer Science () –

proven under the assumption that the abstract operators of sharing, aliasing and purity are also optimal. It is assumed that
an abstract value contains sharing, aliasing and purity information, together with reachability and cyclicity, and that it will
be clear from the context how to refer to each part.

By soundness, the non-strict inequalities E τ
ζ
Jv.f K(J) ⊇ α(Eι

τ Jv.f K(γ (J))) and Cτ
ζ
Jv.f :=ρK(J) ⊇ α(C ι

τ Jv.f :=ρK(γ (J)))
already hold, where set inclusion is the partial order on Iτ

rc ⊓ Iτ
s . Therefore, to prove this claim amounts to demonstrate the

other direction of the inclusion, i.e., that, for every reachability or cyclicity statement st contained in J , there is a concrete
state σ ∈ γ (J) such that σ1 = C ι

τ Jv.f :=ρK(σ) (the case of Eι
τ Jv.f K(σ) is similar) is a concrete state whose abstraction α({σ1})

contains st . In other words, σ1 is a state where the may-information represented by st is actually happening (for example, if
st is some v w, then theremust actually be a path in the heap from v tow in σ1), so that the abstraction of σ1 will forcefully
contain such a statement. In the proof, this idea of ‘‘a statement st actually happening in a state σ ’’ will be phrased as ‘‘σ
justifies st ’’.

• Case f #1 : the output abstract state J1 is basically the union of four sets: (a) J; (b) J[v/ρ]; (c) {w ρ | ⟨w•v⟩∈Js}; and (d)
{ρ ρ | 	v

∈ J}. For every one of them it is necessary to prove that, for every statement st contained in it, there exists at
least one concrete input state σ such that the corresponding output state σ1 = f1(σ) justifies st .
(a) Clearly, every statement st which was already in J , and is therefore maintained in J1, is justified by the fact that the

structure of the heap does not change when evaluating the expression: by hypothesis, there was already a state σ
justifying st , and the corresponding output σ1 still justifies such statement.

(b) In this case, relevant statements in J can be of four kinds (other statements which do not involve v are not relevant),
and we need to prove that the corresponding statements in J[v/ρ] (where v is replaced by ρ) are justified.

v w : In this case, there certainly exists σ in the concretization of J such that v actually reaches w in at least two steps,
and the first step goes through f ; then, the location pointed to by the expression actually reaches w (in fact, it is
on the path from v to w), so that σ1 justifies the statement ρ w contained in J[v/ρ], corresponding to v w;

w v : This case is easy since there exists σ such that w actually reaches v, and it is straightforward to see that ρ will
be actually reached by w in σ1 (transitivity of reachability at the concrete level), thus justifying the corresponding
statement w ρ in J[v/ρ];

v v : This case is also easy because there certainly exists σ such that v is cyclic, and the first step of the cycle when
starting from v goes through f ; thismeans that v.f is still in the cycle, and the location pointed to by the expression
reaches itself, thus justifying the corresponding statement ρ ρ in J[v/ρ];

	v : This case is similar to the previous one.
(c) In this case, every w ρ must be justified, provided there is sharing (this is a case where it becomes clear that sharing

must also be considered) between v and w in the input state. It is enough to take the same (up to variable renaming)
concrete state used in the discussion about backward completeness, where v and w both reach (in one step, and
through f) the same location in the heap: the location pointed to by ρ in the output state comes to be actually reached
by w, thus justifying the statement.

(d) The last case is easy because it is enough to find some σ where v is cyclic (but not necessarily reaching itself), and the
location pointed to by v.f reaches itself.

• Case f #2 : The first issue here is to note that optimality requires the single-field optimization discussed in Section 5.2.3,
where J0 is strictly smaller than J ′0 whenever it can be guaranteed that all the relevant reachability or cyclicity paths
have been broken by updating v.f . In fact, consider the case where this optimization is not performed (i.e., J ′ = J ′0). The
following piece of code
1 x := new C();
2 x.f := x;
3 x.f := null;

shows the lack of optimality under the condition that f is the only field of C. In fact, let the abstract value J before line
3 be {x x,	x} as it would be obtained by the analysis, so that γ (J) contains all the states where x is cyclic and reaches
itself. However, the abstract semantics without the optimization would generate the same abstract value {x x,	x} as
the final value. This is not optimal since any concrete state after executing this code would have x acyclic and not self-
reaching, so that its abstraction would be {} (in other words, none of the statements would be justified). On the other
hand, the aforementioned optimization removes these statements from J ′0, so that J ′ is empty, thus achieving, in the end,
optimality.

In the definition depicted in Fig. 5, the output abstract state J1 consists of two more parts: (a) the one coming
from Jr = {w1 w2 | ((⟨w1·v⟩∈J ′s) ∨ (w1 v ∈ J ′)) ∧ ((⟨ρ·w2⟩∈J ′s) ∨ (ρ w2 ∈ J ′))}; and (b) the one coming from
Jc = {	w

| ((ρ v ∈ J ′) ∨ (⟨ρ·v⟩∈J ′s) ∨ (ρ
∈ J ′)) ∧ ((⟨w·v⟩∈J ′s) ∨ (w v ∈ J ′))}.

(a) In order to justify a statement w1 w2, it is enough to take a concrete state σ ∈ γs(J) (which clearly exists) where w1
is actually reaching v, and the location pointed to by the result of the expression is actually reaching w2. In this case,
the field update will create a path from w1 to w2 in σ1, so that the statement is justified.

(b) A statement 	w can be easily justified by taking σ such that the result of the expression points to an actually cyclic
data structure, and w actually reaches v. Then, the newly created path will make w cyclic.
The final elimination of ρ is not problematic.

S. Genaim, D. Zanardini / Theoretical Computer Science () – 15

5.5. Note on an implementation

The present analysis has been implemented in the COSTA [2] COSt and Termination Analyzer. The implementationworks
as a component of COSTA, and handles programs written in full sequential Java bytecode, which includes control flow that
originates from the handling of exceptions. Static fields are accounted for as a kind of global variables: this means that, for
every class κ and static field f , a global variable vκ.f is added to the analysis (note that the set of such global variables
is statically decidable by simply inspecting the program code). The acyclicity information is used by COSTA to prove the
termination or infer the resource usage of programs.

It is worth mentioning that the implementation is a prototype, and that it can be optimized in many ways. In fact,
the present paper focuses on the theoretical definition of an existing analysis, so that the implementation is not the
most important issue. As a matter of fact, such implementation deals with a different language with respect to the
original implementation; this implies, for example, having to account in a specific way for advanced features of Java and
Java bytecode like objects, exceptions, and static fields. The single-field optimization discussed in Section 5.2.3 is not
implemented.

6. Conclusions

This paper discusses an acyclicity analysis of a Java-like language with mutable data structures, based on reachability
between variables. In particular, the main focus of the paper is on the formalization of an existing analysis within the
framework of Abstract Interpretation. The proposed acyclicity analysis is based on the observation that a field update x.f=y
might create a new cycle iff y reaches x or aliases with it before the command. Two abstract domains are first defined, which
capture the may-reach and may-be-cyclic properties. Then, an abstract semantics which works on their reduced product is
introduced: it uses reachability information to improve the detection of cyclicity, and cyclicity to improve the tracking of
reachability.

The analysis is proven to be sound; i.e., no cyclic data structure are ever considered acyclic. It is also proven to be the best
correct approximation of the concrete semantics with respect to the chosen abstraction.Moreover, it can be shown to obtain
precise results in a number of non-trivial scenarios, where the sharing-based approach is less precise [26]. Indeed, since the
existence of a directed path between the locations bound to two variables implies that such variables share, the proposed
reachability-based analysis will never be less precise than the sharing-based approach. In particular, it is worth noticing
that the reachability-based approach can often deal with directed acyclic graphs, whereas sharing-based techniques will
consider, in general, any DAG as cyclic.

Appendix. Proofs

This appendix includes proofs for: Lemma 4.3 in Appendix A.1; Lemma 4.6 in Appendix A.2; Lemma 4.7 in Appendix A.3;
and Theorem 5.10 in Appendix A.4.

A.1. Proof of Lemma 4.3

Due to the definition of Galois insertion, the result to prove amounts to say that both

(a) ∀Ir ∈ Iτ
r . α

τ
r (γ

τ
r (Ir)) = Ir

and (b) ∀I♭ ∈ Iτ
♭ . γ

τ
r (ατ

r (I♭)) ⊇ I♭

hold, where⊆ is the ordering on Iτ
♭ .

Part (a). We show that v w ∈ Ir ⇔ v w ∈ γ τ
r (ατ

r (I♭)). (⇒) assume v w ∈ Ir ; then, according to the definition of Iτ
r

and class reachability, there must be a concrete state σ ∈ Στ in which v reaches w, since, otherwise, the statement v w
cannot be part of the domain Iτ

r . We construct a state σ ′ from σ by setting all reference variables but v and w to null. By the
definition of γ τ

r , this specific σ ′ must be in γ τ
r (Ir). This, according to the definition of ατ

r , implies that v w ∈ ατ
r (γ

τ
r (Ir)).

(⇐) assume v w ∈ ατ
r (γ

τ
r (Ir)). According to the definition of ατ

r , this means that there exists at least one σ ∈ γ τ
r (Ir) in

which v reaches w, and, according to the definition of γ τ
r , this can only happen if v w ∈ Ir .

Part (b). We show that σ ∈ I♭ ⇒ σ ∈ γ τ
r (ατ

r (I♭)). Let σ ∈ I♭, and let Ir be the set of all reachability relations in σ , i.e., v
reaches w in σ iff v w ∈ Ir . Clearly, Ir ⊆ ατ

r (I♭). Then, according to the definition of γ τ
r , σ must be in γ τ

r (ατ
r (I♭)) since it

satisfies ∀v, w ∈ τ . v reaches w in σ ⇒ v w ∈ ατ
r (I♭). �

A.2. Proof of Lemma 4.6

Very similar to the proof of Lemma 4.3. �

16 S. Genaim, D. Zanardini / Theoretical Computer Science () –

A.3. Proof of Lemma 4.7

(⇒). We show that:
γ τ
rc(⟨I

1
r , I

1
c ⟩)=γ τ

rc(⟨I
2
r , I

2
c ⟩) ⇒ I1c=I

2
c∧(I1r \{v v | 	v /∈I1c })=(I2r \{v v | 	v /∈I2c }).

F G H
First, note that the logical formula F ⇒ (G ∧ H) is equivalent to (¬G⇒ ¬F) ∧ (¬H ⇒ ¬F). The proof is by contradiction,
and consists of two parts:
1. proving that I1c ≠ I2c implies γ (⟨I1r , I

1
c ⟩) ≠ γ (⟨I2r , I

2
c ⟩); and

2. proving that (I1r \ {v v|	v /∈I1c }) ≠ (I2r \ {v v|	v /∈I2c }) implies γ (⟨I1r , I
1
c ⟩) ≠ γ (⟨I2r , I

2
c ⟩).

The proof goes as follows.
1. Suppose I1c ≠ I2c , and let X1 = {v | 	

v
∈ I1c \ I

2
c }, and X2 = {v | 	

v
∈ I2c \ I

1
c }. Note that, by hypothesis, at least one of X1

and X2 must be non-empty. For i ∈ {1, 2}, let σi be a state where
(a) Every v ∈ Xi is cyclic, but does not reach itself, and no other variable is cyclic; and
(b) No variables reach any variables, i.e.,ατ

r ({σi}) = ∅. Note that this requirement is consistent, since the cyclicity of some
variables (in this case, those in Xi) does not necessarily imply the existence of a reachability path between variables.

It is easy to see that σ1 and σ2 both belong to γr(I1r) ∩ γr(I2r), since they do not include any reachability statement;
therefore, if X1 ≠ ∅, then σ1 belongs to γ (⟨I1r , I

1
c ⟩), but not to γ (⟨I2r , I

2
c ⟩), since ⟨I

2
r , I

2
c ⟩ does not allow the cyclicity on

variables from X1. Dually, if X2 ≠ ∅, then σ2 belongs to γ (⟨I2r , I
2
c ⟩) but not to γ (⟨I1r , I

1
c ⟩).

2. Suppose R1 = I1r \ {v v | 	v /∈I1c } is different from R2 = I2r \ {v v | 	v /∈I2c }, and let S1 = R1 \ R2 and S2 = R2 \ R1. Note
that at least one between S1 and S2 is non-empty. If S1 is not empty, then let p ∈ S1 be one of the statements which in R1
but not in R2. A state σ1 can be chosen such that
(a) If p = v v, then v is the only cyclic variable in σ1 (note that the cyclicity of v must be allowed by I1c since, otherwise,

p would not be included in R1 and thus not in S1 too); and
(b) If p = v w, with v ≠ w; then, v must reach w in σ1, and no other variable reaches any other variable. Also, no

variables can be cyclic.
Clearly, in both cases above such state belongs to γ (⟨I1r , I

1
c ⟩), but it cannot be in γ (⟨I2r , I

2
c ⟩) because: in (a), either v v ∉ I2r

(so that σ1 ∉ γ τ
r (I2r)), or 	

v
∉ I2c (so that thus σ1 ∉ γ τ

c (I2c)); and, in (b), v w ∉ I2r , so that σ1 ∉ γ τ
r (I2r). Dually, if S2 is

empty, then S1 cannot be empty, and, with a similar reasoning, a state σ2 can be found which belongs to γ (⟨I2r , I
2
c ⟩), but

not to γ (⟨I1r , I
1
c ⟩).

(⇐). We prove that:
I1c=I

2
c∧(I1r \{v v|	v

/∈I1c })=(I2r \{v v|	v
/∈I2c })⇒ γ τ

rc(⟨I
1
r , I

1
c ⟩)=γ τ

rc(⟨I
2
r , I

2
c ⟩).

It follows easily from observing that, under the hypothesis of the above implication, the only difference between ⟨I1r , I
1
c ⟩ and

⟨I2r , I
2
c ⟩ is that ⟨I

1
r , I

1
c ⟩ may contain some statements v v for variables v such that 	v /∈ I1c , and ⟨I

2
r , I

2
c ⟩ may contain some

(different) statements v v for variables v such that or 	v /∈ I2c . However, adding such statements to both abstract values
does not change the set of concrete states they represent, since the possibility that v reaches itself in any concrete state is
contradicted by the lack of the	v statement. In otherwords, there is no concrete statewhich belongs either to γ τ

rc(⟨I
1
r , I

1
c ⟩) or

γ τ
rc(⟨I

2
r , I

2
c ⟩), but not to γ τ

rc(⟨I
1
r \{v v|	v /∈I1c }, I1c ⟩) and γ τ

rc(⟨I
2
r \{v v|	v /∈I2c }, I2c ⟩) (which are equal by the hypothesis.) �

A.4. Proof of Theorem 5.10

This proof of soundness amounts to proving the soundness of all abstract denotations for expressions and commands,
assuming that a current interpretation ι and a corresponding abstract one ζ which correctly approximates ι are available.
Then, a simple induction can be applied to show that the abstract semantics of Definition 3.1 correctly approximates the
concrete semantics of Definition 5.7 (the induction step basically applies the denotations on the elements of ι and ζ).

In the following, let σ be a concrete state, com be a command, exp be an expression, and σ ∗ be the state obtained by
executing com or evaluating exp in σ . The soundness of the abstract denotations for expressions and commands amounts to
say that, if I ∈ Iτ

rc correctly approximates σ , i.e., σ ∈ γ τ
rc(I), then the abstract state I∗ = Cτ

ζ
JcomK(I) (or I∗ = E τ

ζ
JexpK(I), in

the case of expressions) correctly approximates σ ∗. Formally, we show that
1. ∀σ ∈ Στ , I ∈ Iτ

rc . σ ∈ γ
τ∪{ρ}
rc (I) ⇒ Eι

τ JexpK(σ) ∈ γ
τ∪{ρ}
rc (E τ

ζ
JexpK(I))

2. ∀σ ∈ Στ , I ∈ Iτ
rc . σ ∈ γ τ

rc(I) ⇒ C ι
τ JcomK(σ) ∈ γ τ

rc(C
τ
ζ
JcomK(I)).

Note that, if σ ∗ is obtained after evaluating an expression, then ρ ∈ dom (σ ∗), while, if it is obtained after executing a
command, then dom (σ ∗) = dom (σ).

The soundness proof considers separately the rules of the abstract semantics E τ
ζ
J_K(_) and Cτ

ζ
J_K(_). When some logical

fact is said to hold by soundness, it means that it holds by the hypothesis on the input (i.e., that σ ∈ γ τ
rc(I) holds), or by

induction on sub-expressions or sub-commands. For example, the fact that v reaches w in σ implies v w ∈ I by soundness,
since I is supposed to be a sound description of σ .

S. Genaim, D. Zanardini / Theoretical Computer Science () – 17

Denotations (1e), (2e), and (3e). Suppose σ ∗ ∉ γ
τ∪{ρ}
rc (I∗). Then, according to the definition of γ

τ∪{ρ}
rc , it must be the case

that (i)w1 reachesw2 in σ ∗ butw1 w2 ∉ I∗; or (ii)w is cyclic in σ ∗ but	w
∉ I∗. This contradicts the soundness hypothesis

σ ∈ γ τ
rc(I), since I∗ = I and σ and σ ∗ have the same reachability and cyclicity information.5

Denotation (4e). Assume τ(v) ≠ int, otherwise the reasoning we developed for case (1e) applies. Note that this case does
not have any side effects, except defining the new variable ρ. If σ ∗ ∉ γ

τ∪{ρ}
rc (I∗), then, according to the definition of γ τ∪{ρ}

rc ,
it must be the case that (i) w1 reaches w2 in σ ∗ but w1 w2 ∉ I∗; or (ii) w is cyclic in σ ∗ but	w

∉ I∗. Suppose we are in case
(i):

• If w1 ≠ ρ ∧w2 ≠ ρ, then σ̂ (w2) = σ̂ ∗(w2) ∈ R(σ̂ ∗(w1), σ̌
∗) = R(σ̂ (w1), σ̌), i.e., w1 reaches w2 in σ . By the soundness

hypothesis σ ∈ γ τ
rc(I) we have w1 w2 ∈ I ⊆ I∗, which contradicts w1 w2 ∉ I∗.

• If w1 = ρ ∧ w2 ≠ ρ, then σ̂ (w2) = σ̂ ∗(w2) ∈ R(σ̂ ∗(ρ), σ̌ ∗) = R(σ̂ (v), σ̌), i.e., v reaches w2 in σ . By the soundness
hypothesis σ ∈ γ τ

rc(I), we have v w2 ∈ I and thus ρ w2 ∈ I[v/ρ] ⊆ I∗, which contradicts ρ w2 ∉ I∗.
• If w1 ≠ ρ ∧ w2 = ρ, then σ̂ (v) = σ̂ ∗(ρ) ∈ R(σ̂ ∗(w1), σ̌

∗) = R(σ̂ (w1), σ̌), i.e., w1 reaches v in σ . By the soundness
hypothesis σ ∈ γ τ

rc(I), we have w1 v ∈ I and thus w1 ρ ∈ I[v/ρ] ⊆ I∗, which contradicts w1 ρ ∉ I∗.
• If w1 = ρ ∧ w2 = ρ, then σ̂ (v) = σ̂ ∗(ρ) ∈ R(σ̂ ∗(ρ), σ̌ ∗) = R(σ̂ (v), σ̌), i.e., v reaches v in σ . By the soundness

hypothesis σ ∈ γ τ
rc(I), we have v v ∈ I and thus ρ ρ ∈ I[v/ρ] ⊆ I∗, which contradicts ρ ρ ∉ I∗.

For case (ii), the reasoning is basically as (i), by considering cyclicity instead of reachability.

Denotation (5e). Assume f is of reference type, otherwise the reasoning we have done for case (1e) applies. Note that this
case does not have any side effects, except defining the new variable ρ. If σ ∗ ∉ γ

τ∪{ρ}
rc (I∗), then, according to the definition

of γ τ∪{ρ}
rc , it must be the case that (i) w1 reaches w2 in σ ∗ but w1 w2 ∉ I∗; or (ii) w is cyclic in σ ∗ but 	w

∉ I∗. Suppose we
are in case (i):

• If w1 ≠ ρ ∧w2 ≠ ρ, then σ̂ (w2) = σ̂ ∗(w2) ∈ R(σ̂ ∗(w1), σ̌
∗) = R(σ̂ (w1), σ̌), i.e., w1 reaches w2 in σ . By the soundness

hypothesis σ ∈ γ τ
rc(I), we have w1 w2 ∈ I ⊆ I∗, which contradicts w1 w2 ∉ I∗.

• If w1 = ρ ∧ w2 ≠ ρ, then σ̂ (w2) = σ̂ ∗(w2) ∈ R(σ̂ ∗(ρ), σ̌ ∗) ⊆ R(σ̂ (v), σ̌), i.e., v reaches w2 in σ . By the soundness
hypothesis σ ∈ γ τ

rc(I), we have v w2 ∈ I and thus ρ w2 ∈ I[v/ρ] ⊆ I∗, which contradicts ρ w2 ∉ I∗.
• If w1 ≠ ρ ∧ w2 = ρ, then σ̂ ∗(ρ) ∈ R(σ̂ (w1), σ̌

∗) = R(σ̂ (w1), σ̌), we also have σ̂ ∗(ρ) ∈ R(σ̂ (v), σ̌)) (since ρ = v.f),
i.e., w1 shares with v in σ . Thus, w1 ρ ∈ {w ρ | ⟨w•v⟩ ∈ Is} ⊆ I∗, which contradicts w1 ρ ∉ I∗.
• If w1 = ρ ∧w2 = ρ, then σ̂ ∗(ρ) ∈ R(σ̂ ∗(ρ), σ̌)), which means that v is cyclic in σ , and by the soundness hypothesis we

have 	v
∈ I , and thus ρ ρ ∈ {ρ ρ|	v

∈ I} ⊆ I∗, which contradicts w1 ρ ∉ I∗.

For case (ii), the reasoning is basically as (i), by considering cyclicity instead of reachability.

Denotation (6e). The proof for this case is by structural induction on expressions, where the base-case include the non-
compound expressions of cases (1e)–(5e) and (7e), for which we have seen already (case (7e) is done below) that the
abstract denotations correctly approximate the concrete ones. Let I1 = E τ

ζ
Jexp1K(I) andσ1 = Eι

τ Jexp1K(σ). By the (structural)
induction hypothesis, we have σ1 ∈ γ

τ∪{ρ}
rc (I1). Moreover, since the state ⟨σ̂ , σ̌1⟩ is basically obtained by removing ρ from

σ1, we also have ⟨σ̂ , σ̌1⟩ ∈ γ τ
rc(∃ρ.I1). Now, let I2 = E τ

ζ
Jexp2K(∃ρ.I1), and σ2 = Eι

τ Jexp2K(⟨σ̂ , σ̌1⟩); then, by the (structural)
induction hypothesis, we have σ2 ∈ γ

τ∪{ρ}
rc (I2). Since σ ∗ is obtained from σ2 by setting ρ to a number (i.e., there is no

reachability or cyclicity relations in σ ∗ that involve ρ), and since I∗ = ∃ρ.I2, we can conclude that σ ∗ ∈ γ
τ∪{ρ}
rc (I∗).

Denotation (7e). Calling a method m consists of an abstract execution of its body on the actual parameters, followed by
the propagation of the effects of m to the calling context (i.e., the input abstract state I). First, note that, in the abstract
semantics, reachability and cyclicity statements are only removed when a variable is assigned. Due to the use of shallow
variables for the parameters, statements about the formal parameters ofm are never removed during an abstract execution
of its body. Therefore, if, during the execution ofm, the variable v reachesw, then, at the end of themethod, v will be said to
possibly reach w, even if this reachability is destroyed at some subsequent program point. This is similar to the way sharing
information is dealt with in the present approach (following [28,14]).

Keeping track of cyclicity is rather easy. In addition to keeping all cyclicity which is in I , a safe approximation is taken,
which states that, if an argument v might become cyclic during the execution ofm, then anything that shares with it before
the execution might also become cyclic. This is accounted for in the definition of I4, and is clearly safe. In fact, variables of
the calling method which are not arguments of the call, and do not share with any argument vi, cannot be affected by the
execution of m.

The treatment of reachability is more complicated: in addition to I and Im (which is introduced by the method for v̄),
it is necessary to take into account the effect of the method call on variables which are not arguments. This is done in the
definition of I1, I2, and I3, which model the effects of m on variables which share with its actual arguments. Consider two

5 Note, that, unlike in Java, the simple act of creating an object does not involve, in itself, any action on its content, i.e., there are no side effects due to
the constructor.

18 S. Genaim, D. Zanardini / Theoretical Computer Science () –

w1 vi vj w2

*

I1

w1 vi vj w2

*

*

I2

Fig. A.7. Scenarios where a path from w1 to w2 can be created inside m. Dashed arrows represent reachability: they connect a variable to a reachable
location (represented as a circle). Solid arrows connect a variable u to the location σ̂ (u) directly bound to it. Arrows labeled with * are paths which are
created inside m (strictly speaking, they could also exist before the call), while the others existed before the method call. In both cases, it can be seen that
a reachability path from w1 to w2 is created, which contains a sub-path created inside m by modifying its arguments.

arguments vi and vj (where i can be equal to j): a path between two variables w1 and w2 (which can be arguments, or non-
argument variables) can be created bym if (i) vi and w1 share before the call, vj and w2 alias before the call, vi is modified in
m, and vi reaches vj after the call; or (ii) vi and w1 share before the call, vj reaches w2 before the call, vi is modified inm, and
vi and vj share (without reaching each other) after the call. The two cases are accounted for in the definition of, resp., I1 and
I2, and are depicted in Fig. A.7. In both cases, the creation of the path requires that an argument is modified inm (condition
v̇i ∈ sh′), and that vi and vj do not point to disjoint regions of the heap (i.e., either vi reaches vj, or they simply share). As a
result, if these conditions are met, then the statement w1 w2 is added. It can be seen that this accounts for all cases where
some change in the arguments of m affects the reachability between non-argument variables.
Finally, I3 considers all variables v aliasing with the return value at the end of m (note that these are the only new aliasing
statements involving arguments which can be created in the body of m) : the information about them is cloned for ρ.

Denotation (1c). Suppose σ ∗ ∉ γ
τ∪{ρ}
rc (I∗). Then, according to the definition of γ τ∪{ρ}

rc , it must be the case that (i)w1 reaches
w2 in σ ∗ but w1 w2 ∉ I∗; or (ii) w is cyclic in σ ∗ but 	w

∉ I∗. Suppose we are in case (i), and let σe = Eι
τ JexpK(σ) and

I1 = E τ
ζ
JexpK(I).

• If w1 ≠ v ∧ w2 ≠ v, then it must be the case that w1 reaches w2 in σe. By the soundness of the expressions denotations
we must have σe ∈ γ

τ∪{ρ}
rc (I1), which means that w1 w2 ∈ I1; thus, w1 w2 ∈ (∃v.I1)[ρ/v] = I∗, which contradicts

w1 w2 ∉ I∗.
• Ifw1 = v∧w2 ≠ v, then it must be the case that ρ reachesw2 in σe. By the soundness of the denotations for expressions,

we must have σe ∈ γ
τ∪{ρ}
rc (I1), which means that ρ w2 ∈ I1, and thus v w2 ∈ (∃v.I1)[ρ/v] = I∗, which contradicts

v w2 ∉ I∗.
• Ifw1 ≠ v∧w2 = v, then it must be the case thatw1 reaches ρ in σe. By the soundness of the denotations for expressions,

we must have σe ∈ γ
τ∪{ρ}
rc (I1), which means that w1 ρ ∈ I1, and thus w1 v ∈ (∃v.I1)[ρ/v] = I∗, which contradicts

w1 v ∉ I∗.
• If w1 = v∧w2 = v, then it must be the case that ρ reaches ρ in σe. By the soundness of the denotations for expressions,

we must have σe ∈ γ
τ∪{ρ}
rc (I1), which means that ρ ρ ∈ I1, and thus v v ∈ (∃v.I1)[ρ/v] = I∗, which contradicts

v v ∉ I∗.

Case (ii) can be done with similar reasoning.

Denotation (2c). This case is trivial when f has type int, since only side effects during the evaluation of exp have to be taken
into account. If f has reference type, then this command is equivalent to first evaluating exp, and then executing v.f := ρ.
Let σ ′ = Eι

τ JexpK(σ), and ℓe = σ̂ ′(ρ). If v and ℓe are considered, then there are two main cases (Fig. A.8): (a) σ̂ (v) = ℓe; or
(b) σ̂ (v) ≠ ℓe.

(a) In this case, a cycle on v is created, whose length is 1. If another variable u (possibly, v itself) sharing with v in σ ∗ is
considered, then there are several possible scenarios in the heap, and soundness has to be proven for each of them.
– u aliases with v or reaches v (cases u1 and u2 in the left-hand side of Fig. A.8). In this case, u reaches v via f , and this

is taken into account in the definition of Ir , where u plays the role of w1, and v also plays the role of w2. The result is
that Ir includes u v, as expected. The semantics correctly adds v v as well (in fact, v can play the role of both w1
and w2). As for cyclicity, the definition of Ic guarantees that 	v and 	u will belong to I∗.

– v reaches u (case u3 in the same figure). In this case, v u ∈ I∗ since, in the definition of Ir , u plays the role of w2 (note
that v and ρ alias). v will also be considered as cyclic by the definition of Ic ;

– v and u both reach a common location ℓ (case u4). If none of the previous cases happens, then v and u do not reach each
other, so that I∗ does not need to contain reachability statements between them. In general, only v will be considered
as cyclic in this case (in the same way as the previous cases).

S. Genaim, D. Zanardini / Theoretical Computer Science () – 19

ℓe

v

u1

u2 ℓ3

u3

ℓ4 u4

f

ℓe

v

u1

u2

u3

u4

u5

ℓ

ℓ

u6

u7

u8

f

Fig. A.8. The possible scenarios for case (2c): (a) ℓe and σ̂ (v) coincide (left); and (b) they do not coincide. Variables ui represent the possible relations
between the variable u used in the proof and the data structure modified by the field update. Double solid arrows stand for field dereferencing, and are
labeled with the name of the field. For the other kinds of arrows, see Fig. A.7.

(b) In this case, when considering u, the number of possible scenarios for reachability is larger. Moreover, there are two
scenarios where v would be cyclic after the update (i) ℓe reaches v, so that a cycle is created by the field update, and v
becomes cyclic (if it was not already); or (ii) ℓe does not reach v, so that v is cyclic only if it was already cyclic in σ , and
the same applies to ℓe. In case (ii), it can be easily seen that the definition of Ic accounts for the cyclicity of v since 	v

belongs to I by soundness and will not be removed. Case (i) will be discussed in the following, for each scenario.
– u reaches v or aliases with it (cases u1 and u2 in the right-hand side of Fig. A.8). In this case, it was also reaching v (or

aliasing with it) in σ ′, so that (in the case of reachability) u v ∈ I ′, which implies u v ∈ I ′′, as soundness requires.
As for cyclicity, in case (i), the cyclicity of u is detected because it reaches v.

– Cases u3, u4, and u5. These cases are easy, because nothing changes with respect to the reachability between u and v,
and all the statements were already contained in I .

– u points to ℓe or is reached by it (cases u6 and u7). In this case, u plays the role of w2 in the definition of Ir , and is
correctly considered to be reached by v. As for cyclicity, u will only become cyclic in case (i) if it points to ℓe, or
belongs to the cyclic path. In both cases, the semantics accounts for it since uwould reach v, thus being considered as
cyclic (definition of Ic).

– w and ℓe reach some common location ℓ (case u8). Also easy since nothing changes with respect to the reachability
between u and v.

Note that, due to the discussion in Section 5.2.3, the single-field optimization introduced by condRemove is not problematic
for soundness, since the removal of statements is only applied if the required conditions about v and f are guaranteed to
hold. In any case, the conservative choice of taking condRemove(I ′0, v, f) to be I ′0 itself is also sound.

Denotation (3c). This case is quite straightforward, given the inductive hypothesis on com1 and com2, and the assumption
that exp has no side effects and returns an int. Suppose σ ∗ = C ι

τ JcomiK(σ) for i ∈ {1, 2}, then, by the induction hypothesis,
σ ∗ ∈ γ τ

rc(C
τ
ζ
JcomiK(I)) ⊆ γ τ

rc(C
τ
ζ
JcomiK(I)) ∪ γ τ

rc(C
τ
ζ
Jcom2K(I)) = I∗.

Denotations (4c), (5c), and (6c). Rules for loops and concatenation are easy, given the inductive hypothesis on the sub-
commands, and the definition of the fixpoint. The rule for the return command is also easy, being basically similar to variable
assignment.

Having proven that all abstract denotations are soundwith respect to the concrete denotational semantics, together with
Definition 5.7 and the definition of a denotational semantics, proves the theorem. �

References

[1] E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, D. Zanardini, Termination analysis of Java bytecode, in: G. Barthe, F.S. de Boer (Eds.), Proceedings
of International Conference on Formal Methods for Open Object-Based Distributed Systems, FMOODS, in: Lecture Notes in Computer Science, vol.
5051, 2008, pp. 2–18.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, D. Zanardini, COSTA: design and implementation of a cost and termination analyzer for java bytecode,
in: Proceedings of International Symposium on Formal Methods for Components and Objects, FMCO, Revised Lectures, in: Lecture Notes in Computer
Science, vol. 5382, 2008, pp. 113–132.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, D. Zanardini, Cost analysis of object-oriented bytecode programs, Theoretical Computer Science 413 (1)
(2012) 142–159. (Special Issue on Quantitative Aspects of Programming Languages).

[4] I. Balaban, A. Pnueli, L.D. Zuck, Shape analysis by predicate abstraction, in: Proceedings of the International Conference onVerification,Model Checking,
and Abstract Interpretation, VMCAI, January 2005, pp. 164–180.

[5] I. Balaban, A. Pnueli, L.D. Zuck, Shape analysis of single-parent heaps, in: Proceedings of the International Conference on Verification, Model Checking,
and Abstract Interpretation, VMCAI, January 2007, pp. 91–105.

[6] S. Bardin, A. Finkel, D. Nowak, Toward symbolic verification of programs handling pointers, in: Proceedings of the 3rd International Workshop on
Automated Verification of Infinite-State Systems, AVIS’04, April 2004.

[7] J. Berdine, B. Cook, D. Distefano, P. O’Hearn, Automatic termination proofs for programs with shape-shifting heaps, in: Proceedings of International
Conference on Computer Aided Verification, CAV, in: Lecture Notes in Computer Science, vol. 4144, 2006, pp. 386–400.

20 S. Genaim, D. Zanardini / Theoretical Computer Science () –

[8] A. Bossi, M. Gabbrielli, G. Levi, M. Martelli, The s-semantics approach: theory and applications, Journal of Logic Programming 19&20 (1994) 149–197.
[9] J. Brotherston, R. Bornat, C. Calcagno, Cyclic proofs of program termination in separation logic, in: Proceedings of ACM Symposium on Principles of

Programming Languages, POPL, January 2008, pp. 101–112.
[10] B. Cook, A. Podelski, A. Rybalchenko, Termination proofs for systems code, in: Proceedings of ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI, June 2006, pp. 415–426.
[11] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints, in:

Proceedings of ACM Symposium on Principles of Programming Languages, POPL, January 1977, pp. 238–252.
[12] P. Cousot, R. Cousot, Systematic design of program analysis frameworks, in: Proceedings of ACM Symposium on Principles of Programming Languages,

POPL, January 1979, pp. 269–282.
[13] S.K. Debray, N.W. Lin, Cost analysis of logic programs, ACM Transactions on Programming Languages and Systems 15 (5) (1993) 826–875.
[14] S. Genaim, F. Spoto, Constancy analysis, in: Proceedings of Workshop on Formal Techniques for Java-Like Programs, FTfJP, July 2008.
[15] S. Genaim, D. Zanardini, The acyclicity inference of COSTA, in: Proceedings of International Workshop on Termination, WST, July 2010.
[16] S. Genaim, D. Zanardini, Automatic inference of acyclicity, Technical report, 2010.
[17] R. Ghiya, L.J. Hendren, Is it a tree, a dag, or a cyclic graph? a shape analysis for heap-directed pointers in c, in: Proceedings of ACM Symposium on

Principles of Programming Languages, POPL, January 1996, pp. 1–15.
[18] R. Giacobazzi, E. Quintarelli, Incompleteness, counterexamples and refinements in abstractmodel-checking, in: Proceedings of the International Static

Analysis Symposium, SAS, in: Lecture Notes in Computer Science, vol. 2126, 2001, pp. 356–373.
[19] A. Gotsman, J. Berdine, B. Cook, Interprocedural shape analysis with separated heap abstractions, in: Proceedings of the International Static Analysis

Symposium, SAS, in: Lecture Notes in Computer Science, vol. 4134, 2006, pp. 240–260.
[20] S. Graf, H. Saïdi, Construction of abstract state graphs with PVS, in: Proceedings of the International Conference on Computer Aided Verification, CAV,

in: Lecture Notes in Computer Science, vol. 1254, 1997, pp. 72–83.
[21] M. Hind, Pointer analysis: haven’t we solved this problem yet? in: Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For

Software Tools and Engineering, PASTE, June 2001, pp. 54–61.
[22] R. Jones, R. Lins, Garbage Collection: Algorithms for Automatic Dynamic Memory Management, John Wiley & Sons, Inc., New York, NY, USA, 1996.
[23] M. Müller-Olm, D.A. Schmidt, B. Steffen, Model-checking: a tutorial introduction, in: Proceedings of International Static Analysis Symposium, SAS,

in: Lecture Notes in Computer Science, vol. 1694, 1999, pp. 330–354.
[24] J.C. Reynolds, Separation logic: a logic for shared mutable data structures, in: Proceedings of the IEEE Symposium on Logic in Computer Science, LICS,

July 2002, pp. 55–74.
[25] N. Rinetzky, J. Bauer, T.W. Reps, S. Sagiv, R. Wilhelm, A semantics for procedure local heaps and its abstractions, in: Proceedings of ACM Symposium

on Principles of Programming Languages, POPL, January 2005, pp. 296–309.
[26] S. Rossignoli, F. Spoto, Detecting non-cyclicity by abstract compilation into Boolean functions, in: International Conference on Verification, Model

Checking and Abstract Interpretation, VMCAI’06, in: Lecture Notes in Computer Science, vol. 3855, 2006, pp. 95–110.
[27] S. Sagiv, T.W. Reps, R.Wilhelm, Parametric shape analysis via 3-valued logic, ACM Transactions on Programming Languages and Systems 24 (3) (2002)

217–298.
[28] S. Secci, F. Spoto, Pair-sharing analysis of object-oriented programs, in: Proceedings of International Static Analysis Symposium, SAS, in: Lecture Notes

in Computer Science, vol. 3672, 2005, pp. 320–335.
[29] F. Spoto, F. Mesnard, É Payet, A termination analyser for java bytecode based on path-length, Transactions on Programming Languages and Systems

32 (3) (2010) 8:1–8:70.
[30] B. Wegbreit, Mechanical program analysis, Communications of the ACM 18 (9) (1975) 528–539.
[31] R. Wilhelm, S. Sagiv, T.W. Reps, Shape analysis, in: Proceedings of the International Conference on Compiler Construction, CC, in: Lecture Notes in

Computer Science, vol. 1781, 2000, pp. 1–17.

	Reachability-based acyclicity analysis by Abstract Interpretation
	Introduction
	Contributions
	Related work
	Organization

	An example of reachability-based acyclicity analysis
	A simple object-oriented language
	The abstract domain
	Reachability
	Cyclicity
	The reduced product

	Reachability-based acyclicity analysis
	Preliminaries
	The abstract semantics
	Expressions
	Variable assignment
	Field update
	Conditions, loops, composition, and return command
	Method calls

	Soundness
	Completeness and optimality
	Note on an implementation

	Conclusions
	Proofs
	Proof of lemma:gi-reach
	Proof of lemma:gi-cyc
	Proof of lemma:equivalenceClass
	Proof of th:soundness

	References

