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ABSTRACT
Automatic cost analysis has interesting applications in the
context of verification and certification of mobile code. For
instance, the code receiver can use cost information in order
to decide whether to reject mobile code which has too large
cost requirements in terms of computing resources (in time
and/or space) or billable events (SMSs sent, bandwidth re-
quired). Existing cost analyses for a variety of languages
describe the resource consumption of programs by means of
Cost Equation Systems (CESs), which are similar to, but
more general than recurrence equations. CESs express the
cost of a program in terms of the size of its input data.
In a further step, a closed form (i.e., non-recursive) solu-
tion or upper bound can sometimes be found by using ex-
isting Computer Algebra Systems (CASs), such as Maple
and Mathematica. In this work, we focus on cost analysis
of Java bytecode, a language which is widely used in the
context of mobile code and we study the problem of identi-
fying variables which are useless in the sense that they do
not affect the execution cost and therefore can be ignored
by cost analysis. We identify two classes of useless variables
and propose automatic analysis techniques to detect them.
The first class corresponds to stack variables that can be re-
placed by program variables or constant values. The second
class corresponds to variables whose value is cost-irrelevant,
i.e., does not affect the cost of the program. We propose an
algorithm, inspired in static slicing which safely identifies
cost-irrelevant variables. The benefits of eliminating useless
variables are two-fold: (1) cost analysis without useless vari-
ables can be more efficient and (2) resulting CESs are more
likely to be solvable by existing CASs.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specify-
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1. INTRODUCTION
Java bytecode [19] is a stack-based, low-level, object ori-

ented language which is widely used in the context of mo-
bile code, due to its security features and platform inde-
pendence. Automatic cost analysis has interesting applica-
tions in the context of Java bytecode [3]. For instance, the
code receiver may want to infer (or to check, in the spirit
of Proof-Carrying Code [22]) cost information in order to
decide whether to reject code which has too large cost re-
quirements in terms of computing resources (in time and/or
space) [5, 17, 12, 9], and to accept code meeting the estab-
lished requirements. Moreover, in parallel systems, knowl-
edge about the cost of different procedures in the object code
can be used in order to guide the partitioning, allocation and
scheduling of parallel processes [13].

Several cost analyses exist for a wide variety of program-
ming languages, including logic [21, 13, 14], functional [24,
23, 25, 16, 10] and imperative languages [3, 18, 10]. In gen-
eral, given an input program, cost analysis infers a Cost
Equation System (CES), which is a general form of describ-
ing the resource consumption of programs w.r.t. the cost
model of interest. Different cost models can be used to
capture different aspects of the computation, such as the
number of bytecode instructions executed, [4], the memory
(heap) consumption, [6], etc. Intuitively, CESs are systems
of recursive equations which express the cost of a part of
the program in terms of the cost of the parts which may
follow it, according to the program structure. All kinds of
iterations in the program are expressed in form of recursion
in the corresponding CES. In addition, CESs include infor-
mation about how the size of variables changes when the
control moves between different parts of the program (e.g.,
the increase of a loop index). CESs are a generalization of
recurrence equations in the sense that cost analysis often
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infers results which are CESs but do not satisfy the syn-
tactic requirements imposed by recurrence equations. CESs
can sometimes be solved by inferring a closed form solution
(or an upper bound of it), i.e., an expression without recur-
rences, by using Computer Algebra Systems (CASs) such as
Mathematica and Maple.

Ideally, we are interested in obtaining CESs where only
the program variables and arguments which affect the cost
appear as arguments in the equations. The remaining ones
can be ignored as far as cost analysis is concerned. The focus
of this paper is on defining automatic techniques which can
identify and remove from CESs generated by cost analysis
of Java bytecode [3], variables which do not affect the cost,
and are therefore useless. Importantly, removing useless ar-
guments from CESs is crucial for the practical uptake of cost
analysis for, at least, the following two reasons: (i) static
(cost) analysis can be more efficient if we reduce the num-
ber of variables; and (ii) CESs become simpler, and more
likely solvable with standard CASs. Essentially, we classify
useless variables into two categories:

1. Redundant stack variables. A stack variable represents
an operand stack location at a given program point.
Stack variables are a component of our rule-based rep-
resentation of programs (Sec. 3, Step II). They are
created from the original program by means of a trans-
formation step which eliminates the stack and uses ad-
ditional variables instead. It is often the case that a
stack variable is created by loading a program variable
(or constant) on the stack, and it is immediately elim-
inated after storing the result of some computation (as
in the typical load, load, add, store sequence). In this
case, in the rule-based representation, it is safe to re-
place stack variables by the local variables or constants
whose value was loaded on the corresponding stack
location in the program. This can be done by first
applying a single static assignment transformation to
the corresponding sequence of bytecode instructions,
to avoid name clashes, and then unifying (i.e., making
identical) the local variable or constants with the cor-
responding stack variable. E.g., in iload(v, si) we unify
si with v, and in iconst(1, si) we unify si with 1.

2. Cost-Irrelevant program variables. The program vari-
ables which may have an impact on the cost of a pro-
gram are those that may affect directly or indirectly
the conditional statements (i.e., they can affect the
control flow of the program), and those that may affect
the values which are used as input to operations which
do not have a constant cost. Calls to methods are a
typical example of non-constant operations w.r.t. cost.
Also bytecode instructions can be non-constant, as in
the case of array manipulation (see Sec. 5). We refer
to both kinds of variables as cost-relevant. The rest of
variables are called cost-irrelevant, and can be safely
removed. For instance, typically, accumulating vari-
ables which merely keep the temporary value of some
result do not affect the control flow, and, if they are
not used in operations with a non-constant cost, they
are cost-irrelevant. We formalize the problem of com-
puting a safe approximation of the set of cost-relevant
arguments as a backward slicing [27] problem, where
variables in reachable conditional statements and op-
erations with non-constant cost are the information we

want to preserve, i.e., they are used to build the slicing
criterion.

While redundant stack variables only occur in stack-based
programming languages (such as Java bytecode), their re-
moval is beneficial in principle for any static analysis, not
only cost analysis. Also, though cost-irrelevant variable
elimination is particular to cost analysis (and also termi-
nation) it is of interest for cost analysis of any language, not
only Java bytecode. Therefore, we claim that our contri-
butions are both useful for other analyses (category 1) and
applicable to other programming languages and paradigms
(category 2).

2. JAVA BYTECODE
A (sequential) Java bytecode (JBC) program consists of

a set of class files, one for each class. A class file contains
information about its name, the class it extends, and the
fields and methods it defines. Each method has a unique
signature m from which we can obtain the class where the
method is defined, the name of the method, and its type.
The bytecode associated to m is a sequence of bytecode in-
structions 〈pc1:b1, . . . , pcn:bn〉, where each bi is a bytecode
instruction and pci is its address. In addition, the method’s
local variables are denoted by 〈l0, . . . , ln−1〉, where l0 corre-
sponds to the this reference (unlike Java, in Java bytecode,
the this reference is explicit), and l1, . . . , lk with k<n are
the formal parameters of the method. Similarly, each field
f has a unique signature from which we can obtain its name
and the name of the class the field belongs to. The bytecode
instructions we consider include:

bcInst ::= istore v | astore v | iload v | aload v | iconst n
| iadd | isub | iinc v n | imul | idiv
| if cond pc | goto pc | ireturn
| new c | invokevirtual c.m | invokespecial c.m
| getfield c.f | putfield c.f

where c is a class, cond is a comparison condition on numbers
(ne, le, icmpgt, etc.) or references (null, nonnull), v is a local
variable, n is an integer and pc is an instruction address.
The instructions in the first row move information from and
to the stack. The second row includes arithmetic instruc-
tions. The third row contains conditional and unconditional
jumps and the return from a method call. The fourth and
fifth rows contain object-oriented instructions. All instruc-
tions in the first two rows are executed sequentially, i.e., one
after the other (non-branching). The ones in the last three
rows, except for new c, are non-sequential (or branching):
execution may continue with an instruction which is not the
next one.

3. COST ANALYSIS OF JAVA BYTECODE
BY EXAMPLE

We briefly illustrate the cost analysis we refer to [3] by
using the example depicted in Fig. 1. The Java program
(on the top, provided just for clarity since the analysis is di-
rectly performed on the Java bytecode program) and its cor-
responding Java bytecode (on the bottom) define a method
sum that, given the integer values n and m, computes the
sum

res =
m

Σ
i=1

n

Σ
j=i

i ∗ j

Computing a closed form function which is an exact solution
or an upper bound of the cost of sum (e.g., we may choose
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class Sum {
static int sum(int m, int n) {
int res=0;
for (int i=1; i<=m; i++)
for (int j=i; j<=n; j++)
res += i*j;

return res;
}

}

0: iconst 0
1: istore 2
2: iconst 1
3: istore 3
4: iload 3
5: iload 0
6: if icmpgt 37
9: iload 3
10: istore 4
12: iload 4
14: iload 1
15: if icmpgt 31

18: iload 2
19: iload 3
20: iload 4
22: imul
23: iadd
24: istore 2
25: iinc 4, 1
28: goto 12
31: iinc 3, 1
34: goto 4
37: iload 2
38: ireturn

Figure 1: A Java Program and its corresponding
Java bytecode

Figure 2: CFGs for the Java bytecode program in
Fig. 1

a cost model where the cost is the number of bytecode in-
structions which may be executed) in terms of its input ar-
guments consists of several steps which are explained below:
(1) recovering the structure of the program by means of a set
of Control Flow Graphs (CFGs); (2) transforming the CFGs
into a rule-based representation; (3) inferring size relations
between the program variables and generating a CES from
which we can obtain a closed form solution or upper bound
using standard CASs.

Step I: Control Flow Graph
In the first step, each sequence of Java bytecode instruc-
tions (which corresponds to a method) is transformed into
a corresponding set of CFGs by using techniques from com-
piler theory [1, 2]. This is done by splitting the instruction
sequence into maximal sub-sequences of non-branching in-
structions, which form the basic blocks (nodes) of the initial
graph. The basic blocks are connected by guarded edges
which describe the possible transitions. Guards and edges
are introduced by considering the last bytecode instruction

sum(〈m, n〉, 〈r〉) := init local vars(〈res, i, j〉), sum0(〈m, n, res, i, j〉, 〈r〉).

sum0(〈m, n, res, i, j〉, 〈r〉) := iconst(0, s0), istore(s0, res), iconst(1, s0),
istore(s0, i), sum1(〈m, n, res, i, j〉, 〈res, i, j〉), iload(res, s0), ireturn(s0, r).

sum1(〈m, n, res, i, j〉, 〈res, i, j〉) := iload(i, s0), iload(m, s1),
nop(if icmpgt(s0, s1)), sumc

1(〈m, n, res, i, j, s0, s1〉, 〈res, i, j〉).

sumc
1(〈m, n, res, i, j, s0, s1〉, 〈res, i, j〉) := guard(if icmple(s0, s1)),

sum2(〈m, n, res, i, j〉, 〈res, i, j〉).
sumc

1(〈m, n, res, i, j, s0, s1〉, 〈res, i, j〉) := guard(if icmpgt(s0, s1)).
sum2(〈m, n, res, i, j〉, 〈res, i, j〉) := iload(i, s0), istore(s0, j),

sum3(〈m, n, res, i, j〉, 〈res, j〉), iinc(i, 1), nop(goto),
sum1(〈m, n, res, i, j〉, 〈res, i, j〉).

sum3(〈m, n, res, i, j〉, 〈res, j〉) := iload(j, s0), iload(n, s1),
nop(if icmpgt(s0, s1)), sumc

3(〈m, n, res, i, j, s0, s1〉, 〈res, j〉).

sumc
3(〈m, n, res, i, j, s0, s1〉, 〈res, j〉) := guard(if icmple(s0, s1)),

sum4(〈m, n, res, i, j〉, 〈res, j〉).
sumc

3(〈m, n, res, i, j, s0, s1〉, 〈res, j〉) := guard(if icmpgt(s0, s1)).
sum4(〈m, n, res, i, j〉, 〈res, j〉) := iload(res, s0), iload(i, s1), iload(j, s2),

imul(s1, s2, s1), iadd(s1, s0, s0), istore(s0, res), iinc(j, 1), nop(goto),
sum3(〈m, n, res, i, j〉, 〈res, j〉).

Figure 3: The Intermediate Representation for the
CFGs of Fig. 2

of each block, and represent the condition (guard) for the
control going from one block to another one. Finally, a loop
extraction transformation is applied on the initial CFG in
order to separate those sub-graphs corresponding to loops.
This transformation has been well studied in the area of
program decompilation [7]. It is crucial when the program
contains nested loops, since it allows analyses which are com-
positional, in the sense that they can reason on just one loop
at a time.

The CFGs of the sum method are depicted in Fig. 2. In
block 0, the variables i and res are initialized (first four in-
structions), and the control is transferred to the middle CFG
(using the instruction call loop), which corresponds to the
outer-loop. Upon return from that loop, the method returns
the value res (last two instructions). In block 1 (the entry of
the outer-loop), the values of i and m are compared. If i≤m

then the control is transferred to block 2 which corresponds
to the loop’s body, otherwise the control is transferred to a
block which indicates that the loop has terminated (and con-
trol goes back to the caller). Note that the corresponding
edges are annotated by conditions (guards) corresponding
to i≤m and i>m. Block 2 corresponds to the body of the
outer-loop: it initializes j, transfers the control to block 3
which corresponds to the inner-loop, and upon return it in-
creases i by one. The inner-loop is defined similarly by the
CFG on the right.

Step II: Rule-Based Representation
In the second step, CFGs are represented procedurally by
means of rule-based programs. A rule-based program de-
fines a set of procedures, each of them defined by one or
more rules. We use x to denote a sequence of variables
〈x1, . . . , xn〉. Each rule takes the form head(x̄ , ȳ):=[guard ],
instr ,[cont ] where (1) head is a unique identifier for the pro-
cedure the rule belongs to; (2) x̄ and ȳ respectively indicate
the sequences of input and output arguments; (3) guard
takes the form guard(φ), where φ is a Boolean condition on
the variables in x̄; (4) instr is a sequence of bytecode instruc-
tions (where all input and output arguments to the instruc-
tions, including the local variables and stack elements they
work on, are made explicit) and calls to other rules; and (5)
cont indicates a call to another procedure which represents
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the continuation of this procedure, if it exists. We use [ ] to
denote that an element is optional.

The most relevant issue in our study is related to the vari-
ables which become the arguments of the rules. Regarding
the input arguments, x̄ should include the local variables for
the method, and the stack elements at the beginning of the
block. As for the output arguments, ȳ usually contains only
the return value of the method, denoted by r. Moreover,
in the case of rules which correspond to loops, output argu-
ments also include the variables which are modified during
the execution of the loop.

The rule-based program(s) depicted in Fig. 3 correspond
respectively to the CFGs in Fig. 2. The rule sum corre-
sponds to the method entry. It takes the input local vari-
ables m and n, and returns the output variable r. It first
calls init local vars(〈res, i, j〉) which initializes the local vari-
ables to the default value of their type as stipulated by Java,
and then calls the rule sum0 (corresponding to block 0).
The rule sum0 takes all local variables (including the formal
parameters) as input and returns r as output. The instruc-
tions iconst(0, s0) and istore(s0, res) initialize res to zero (note
that s0 corresponds to a stack position which is explicit in
the rule-based representation). Similarly, iconst(1, s0) and
istore(s0, i) initialize i to one. Afterwards, the outer-loop
is called using sum1(〈m, n, res, i, j〉, 〈res, i, j〉), and, upon re-
turn, the last two instructions iload(res, s0) and ireturn(s0, r)
bind the output r to the return value of sum. Note that,
when calling the outer-loop sum1, the list of output argu-
ments only includes those that might be modified during
the execution of sum1. The rule sum1 (which corresponds
to block 1) is the entry rule to the outer-loop. The fact that
block 1 has two successors (block 2 and the loop-exit block)
is expressed by a call to a continuation rule sumc

1 (at the end
of sum1), which in turn is defined by two rules. The first one
accounts for to the case where i≤m (guard(if icmple(s0, s1))),
which continues to sum2. The second one accounts for i>m

(guard(if icmpgt(s0, s1))), which terminates the loop.
Instructions labeled with nop are not considered when

computing the size relations in the following step, since they
have been replaced either by guards or by calls to some other
rule. For instance, nop(if icmpgt) in sum1 is replaced by the
corresponding guards in sumc

1 . Similarly, nop(goto) in sum2

is replaced by the call to sum1 .

Step III: Generating a Cost Equations System
In the last step, size relations analysis is applied to the rule-
based program and a CES, which defines the cost of each rule
as a function of its input arguments, is generated. The aim
of the size analysis is to infer (linear) relations between the
values (or sizes of data structures) of the different variables
at different program points. For example, it infers that the
value of i when calling sum1 (in the rule sum2) is greater
than the input value of i by one. Using these size relations,
for each rule in the corresponding rule-based program we
generate an equation of the form

p(x̄) = c+
k

Σ
i=1

pi(x̄i), ϕ

which defines the cost of the rule p in terms of its input
arguments x̄ to be: (1) c is the direct cost of the bytecode
instructions which appear in the rule; plus (2) the cost of all
calls to other rules, namely p1(x̄1) . . . , pk(x̄k). The linear
constraints ϕ (which are inferred by the size analysis) de-
scribe the size relations between the variables x̄∪ x̄1 · · ·∪ x̄k.

(1) sum(m, n) = sum0(m, n, res, i, j)
{res = 0, i = 0, j = 0}

(2) sum0(m, n, res, i, j) = 6 + sum1(m, n, res′, i′, j)

{res′ = 0, i′ = 1}
(3) sum1(m, n, res, i, j) = 3 + sumc

1(m, n, res, i, j, s0 , s1 )

{s0 = i, s1 = m}
(4) sumc

1(m, n, res, i, j, s0 , s1 ) = sum2(m, n, res, i, j)

{s0≤s1}
(5) sumc

1(m, n, res, i, j, s0 , s1 ) = 0

{s0>s1}
(6) sum2(m, n, res, i, j) = 4 + sum3(m, n, res, i, j′)

+ sum1(m, n, res′, i′, j′′)

{j′ = i, i′ = i + 1}
(7) sum3(m, n, res, i, j) = 3 + sumc

3(m, n, res, i, j, s0 , s1 )

{s0 = j, s1 = n}
(8) sumc

3(m, n, res, i, j, s0 , s1 ) = sum4(m, n, res, i, j)

{s0≤s1}
(9) sumc

3(m, n, res, i, j, s0 , s1 ) = 0

{s0>s1}
(10) sum4(m, n, res, i, j) = 9 + sum3(m, n, res, i, j′)

{j′ = j + 1}

Figure 4: CES for the rule-based program of Fig. 3

We refer to the set of all generated equations as CES.
Assuming that we are interested in knowing the num-

ber of bytecode instructions executed, from the rule-based
program in Fig. 3 we obtain the CES depicted in Fig. 4.
Equation 1 corresponds to the entry cost equation and its
size relations reflect the initialization of the local variables
(init local vars in the recursive representation). Let us con-
sider now, for example, the equations 3-6 which correspond
to the outer-loop. Equation 3 defines the cost of sum1(m, n,

res, i, j) to be the number of its bytecode instructions, namely
3, plus the cost of executing sumc

1(m, n, res, i, j, s0, s1) where
s0=i and s1=m. Equations 4 and 5 define the cost of sumc

1(m,

n, res, i, j, s0, s1) to be equal to the cost of sum2(m, n, res, i, j)
if s0≤s1, and 0 if s0>s1. Equation 6 defines the cost of
sum2(m, n, res, i, j) to be the number of its bytecode instruc-
tions, namely 4, plus the cost of sum3(m,n, res, i, j′) (the
inner-loop) and sum1(m, n, res′, i′, j′′) where j′=i (the initial
value for j in the inner-loop) and i′=i+1 (the outer-loop
counter is increased).

Automatic cost analysis usually aims at providing a closed
form upper bound from the CES, e.g., sum(m, n)=O(m∗n).
Sometimes, this can be done by using standard CASs, such
as Mathematica and Maple. A problem that most automatic
cost analyzers face is that, without a further processing, the
generated CES are not even considered as a valid input for
such systems. This is often the case when equations in the
CES contain irrelevant variables which do not affect the cost
of the corresponding rules. As a consequence, human inter-
action is usually required to remove them before giving the
CES to the CAS. The problem can be often alleviated by
further simplifying the equations by automatically remov-
ing such irrelevant variables. As we will explain in the next
sections, in the CES of Fig. 4, the underlined variables are
irrelevant to the cost and therefore can be safely eliminated.
Furthermore, all stack variables, which appear in frames,
are redundant and can be replaced by the corresponding
local variables. In the next two sections, we provide auto-
matic techniques to identify and eliminate both classes of
irrelevant variables in the context of cost analysis of Java
bytecode.
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4. REMOVING REDUNDANT STACK
VARIABLES

Stack variables can often be removed from the rule-base
representation of a program by replacing their occurrences
with local variables or constants. Our method to remove re-
dundant stack variables is based on transforming the rule to
be in static single assignment form and then unifying stack
variables to local variables (or constants) in the statements
that relate them. This is a simple process that is done locally
to the rules. We sketch the three steps which are performed
by our system in each corresponding subsection.

4.1 Static Single Assignment
In the first step, we perform a Static Single Assignment

(SSA) transformation on the bytecode instructions of the
rule-based representation. This is necessary since we want
to apply unification to its variables (and they cannot be as-
signed to more than one value). It should be noted that this
step is also needed –regardless whether we perform useless
variable elimination– for the size analysis because it infers
input-output denotations for each program point. For ex-
ample, an instruction iadd(s0, s1, s0) will be transformed to
iadd(s0, s1, s

′

0) where s′0 refers to the value of s0 after execut-
ing the instruction. To implement the SSA transformation,
we maintain a mapping ρ, for each rule, of variable names (as
they appear in the rule) to new variable names (constraint
variables). Such a mapping is referred to as a renaming. We
let ρ[x 7→ y] denote the modification of the renaming ρ such
that it maps x to the new variable y. We write ρ[x̄ 7→ ȳ] to
denote the mapping of each element in x̄ to a corresponding
one in ȳ.

For each rule p(x̄, ȳ):=b1, . . . , bn, the SSA transformation
generates a new rule p(x̄, ρn+1(y)):=b′1, . . . , b

′

n by translating
each bi to b′i as illustrated in the following table for a few
bytecode instructions.

i−th element SSA ρi+1

iload(v, sj) iload(ρi(v), s′) ρi[sj 7→ s′]
istore(sj , v) istore(ρi(sj), v′) ρi[v 7→ v′]
iadd(sj , sj+1, sj) iadd(ρi(sj), ρi(sj+1), s′) ρi[sj 7→ s′]
q(x, y) q(ρi(x), y′) ρi[y 7→ y′]
guard(φ) guard(ρi(φ)) ρi

where (1) ρ1 is the identity renaming; (2) ρi (2≤i≤n + 1) is
the mapping available before traversing bi; (3) ρi+1 is the re-
sult of updating ρi; and (4) y′, s′ and v′ are fresh variables.
As an example, we show in Fig. 5 the SSA transforma-
tion for rules sum0 and sum1 together with the associated
renaming for each bytecode.

4.2 Propagating Dependencies by Unification
After applying the SSA transformation, we can unify the

stack elements, local variables and constants that occur as
arguments of instructions like iload, iconst, istore and ireturn.
These unifications will automatically reduce the number of
(distinct) variables which occur in the rule. In addition, the
corresponding instruction can be removed from the program
as its effect is already accounted for in the unifications. This
can be implemented using standard unification as, for in-
stance, done in logic programming [20]. In our example, the
rules sum0 and sum1 in Fig. 5 allow us to apply respectively
the following sets of unifications:

sum0 : {0=s′0, s
′

0=res′, 1=s′′0 , s′′0=i, res′′=s′′′0 , s′′′0 =r}
sum1 : {i=s′0, m=s′1}

Removing the corresponding instructions1 (after applying
the unifications) results in the following simplified rule:

sum0(〈m, n, res, i, j〉, 〈r〉) :=
sum1(〈m, n, 0, 1, j〉, 〈r, i′′, j′〉).

sum1(〈m, n, res, i, j〉, 〈res′, i′, j′〉) :=
sumc

1(〈m, n, res, i, j, i,m〉, 〈res′, i′, j′〉).
A main advantage of implementing the dependency tracking
by relying on unification is that we implicitly have backwards
propagation of dependencies.

4.3 Argument Filtering
In addition to removing the bytecode instructions that

manipulate stack elements, after unifying stack variables to
local variables and constants, we can often filter out some ar-
guments from rules. In our example for the rule sum1, after
the unification of s′0 and s′1 to the local variables, respec-
tively, i and m as described in Section 4.2, calls to the rule
sumc

1 become of the form sumc
1(〈m, n, res, i, j, i, m〉, 〈res′, i′, j′〉).

We can observe that the same local variables i and m are
unnecessarily passed twice in all calls to sumc

1. Therefore,
in the last step, we remove repeated arguments and con-
stant arguments from rules as long as all calls to such rules
are performed with the same repeated variables. There-
fore, in our example, without the irrelevant stack variables,
the head of the rule becomes sumc

1(〈m, n, res, i, j〉, 〈res′, i′, j′〉).
Similarly, we can reason that the head of the rule sumc

3 can
be sumc

3(〈m, n, res, i, j〉, 〈res′, j′〉).
It could happen that there exists one (or several) call

which does not have the same repeated arguments. In such
case, the argument filtering process described above cannot
be performed. It would be possible, though, to filter those
arguments which are actually repeated in all possible call
patterns to the corresponding rule. In practice, by using
this simple analysis described in the three phases above, all
stack variables can often be eliminated, except some of them
that correspond to the return value of methods. Clearly,
eliminating the stack variables from the rule-based represen-
tation can improve the performance of any analysis of Java
bytecode, as the number of total variables is significantly
reduced. In addition, it can also be beneficial for obtaining
a clearer source code in decompilation of bytecode.

5. ELIMINATING COST-IRRELEVANT
PROGRAM VARIABLES

This section describes a technique, based on program slic-
ing and dependence calculus, whose purpose is to remove
information which is not needed by cost analysis. Program
slicing [29, 27] has been usually applied to source code, since
its main interest is to help humans in debugging, maintain-
ing and understanding software. This is also the case of
Java [8, 28], where little or no attention has been paid to
slicing bytecode presumably for this reason. In this sense,
our slicing algorithm is the first one developed at the level of
bytecode. However, our approach does not properly belong
to standard slicing, since the focus is on removing variables
instead of statements. Also, the executability of the slice is
not an issue here.

The process of eliminating variables which are irrelevant
for computing the cost is based on the basic observation that
the cost is affected by (1) variables appearing in guards, since

1Even if these instructions have no effect in size analysis,
depending on the cost model they have to be taken into
account to generate the cost equation system.
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sum0(〈m, n, res, i, j〉, 〈r〉) :=
iconst(0, s′0), %ρ2=ρ1[s0 7→s′

0
]

istore(s′0, res
′), %ρ3=ρ2[res 7→res′]

iconst(1, s′′0 ), %ρ4=ρ3[s0 7→s′′0 ]
istore(s′′0 , i′), %ρ5=ρ4[i7→i′]
sum1(〈m, n, res′, i′, j〉, 〈res′′, i′′, j′〉), %ρ6=ρ5[〈res, i, j〉7→〈res ′′, i′′, j′〉]
iload(res′′, s′′′0 ), %ρ7=ρ6[s0 7→s′′′

0
]

ireturn(s′′′0 , r). %ρ8=ρ7

sum1(〈m, n, res, i, j〉, 〈res′, i′, j′〉) :=
iload(i, s′0), %ρ2=ρ1[s0 7→s′

0
]

iload(m, s′1), %ρ3=ρ2[s1 7→s′
1
]

nop(if icmpgt(s′0 , s′1)), %ρ4=ρ3

sumc
1(〈m, n, res, i, j, s′0, s

′

1〉, 〈res
′, i′, j′〉). %ρ5=ρ4[〈res, i, j〉

7→〈res ′, i′, j′〉]

Figure 5: The SSA transformations for some rules in Fig. 3

those are the variables corresponding to loop conditions,
recursion base-case conditions, etc.; and (2) arguments of
bytecode instructions which are required by the cost model
in order to compute its corresponding cost, e.g., when cre-
ating an array the size of the array is important if we count
memory consumption. Therefore, variables which are guar-
anteed not to affect, directly or indirectly, any variable of the
above two categories can be safely removed from the analy-
sis. This can be done by computing a superset (i.e., a safe
approximation) of the set of the variables which might affect
variables of the above two categories. Thus, the problem can
be formalized as a (static) backward slicing problem, where
the slicing criterion is all variables of the above two cate-
gories. Due to this choice of criterion, the slicing algorithm
does not need to track implicit dependencies (e.g., an as-
signment in the branches of a conditional, where an implicit
dependence exists between the guard variables and the mod-
ified variables), since all variables in guards will be included
in the relevant set of variables. Standard backward slicing
algorithms [27] can be adapted and applied directly to the
rule-based representation. Algorithm 1 is a slicing algorithm
that computes a set of relevant input variables for each rule
p. The algorithm returns for each rule p a set slice(p) of
relevant input arguments. It has a fixpoint nature with an
abstract interpretation flavor [11], where at each iteration
the set slice(p) is refined to include more variables. As we
discuss below, our algorithm assumes information flow [15]
and sharing information [26] is precomputed and available
at slicing time. The procedure slicing is the fixpoint driver,
and the procedure slice procedure is the one applied itera-
tively by the driver until a fixpoint is reached. We start by
explaining slice procedure.

Assume, for a given rule p(x̄, ȳ) := G, b1, . . . , bn, that we
already know that a subset of the output variables V ⊆ ȳ

is required for the cost of some other rules, for example, it
can be because these output variables affect guards of other
rules. The aim is to compute a subset of the input variables
x̄ that might affect (1) the given subset of output variables
V; (2) the guard of p; (3) variables that are relevant to the
cost of other rules that are called from p; and (4) arguments
of bytecodes that are required by the cost model. We do this
by going backwards from bn to b1 (lines 11-24) such that at
each step the set V is refined by using some dependency
information that we obtain from the corresponding bi. We
distinguish two cases depending on whether bi is a bytecode
or a call to another rule:

• If bi = q(x̄i, ȳi) (line 12) then we first compute a set of
variables V ′ ⊆ x̄i (line 13) that might affect the value
of any variable in V ∩ ȳi (we assume this information is
available using information flow analysis [15]). Then

Algorithm 1 A näıve algorithm for backward slicing of the
rule-based representation

1: procedure slicing
2: for all procedure p defined in Program do
3: slice(p) = ∅ // initialization

4: last invoke(p) = ∅
5: add to queue(〈p, ∅〉,Q) // initial calls

6: while 〈p,P〉 = get from queue(Q) do // non-empty queue

7: slice procedure(p,P)
8: procedure slice procedure(p,P)
9: for all p(x̄, ȳ) := G, b1, . . . , bn ∈ Program do

10: V =sh pos to vars(P , ȳ) // converting from positions

11: for i=n to 1 do
12: if bi takes the form q(x̄i, ȳi) then // proc. call

13: V ′ = {w | w ∈ x̄i, z ∈ V ∩ ȳi,
w might affect z}

14: V =sh (V\ȳi)∪pos to vars(slice(q), x̄i)∪V
′

15: P0 = vars to pos(V ∩ ȳi, ȳi)
16: if P0 6⊆ last invoke(q) then // re-analyze q

17: last invoke(q) = last invoke(q) ∪ P0

18: add to queue(〈q, last invoke(q)〉,Q)
19: else // bi is a bytecode

20: if V∩output vars(bi) 6= ∅ then
21: V ′ = input vars(bi)
22: else
23: V ′ = ∅
24: V =sh (V\output vars(bi))∪V

′∪cm vars(bi)

25: V =sh V ∪ vars(G)
26: P = vars to pos(V ∩ x̄, x̄)
27: if P 6⊆ slice(p) then
28: slice(p) = slice(p) ∪ P
29: for all q which call p do
30: add to queue(〈q, last invoke(q)〉,Q)

(line 14) we refine V by removing all variables that
are in V ∩ ȳi and adding the relevant variables for q

(namely slice(q)) and V ′. Afterwards (lines 15-18), q

is scheduled for re-analyses if the set of output vari-
ables of interest V ∩ ȳi is not included in the one with
respect to which it was analyzed the last time. Note
that the role of pos to vars and vars to pos is to convert
from variable positions to their names and vice versa
since it is sometimes convenient to use the names and
sometimes the positions.

• If bi is a bytecode (line 19) then if any of the output
variables of bi is included in V we will include its set
of input variables in V, this is reflected by computing
V ′ in lines 20-23. Then V is refined (line 24) by re-
moving the output variables of bi and adding V ′ and
those which are required by the cost model, namely
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(1) sum(m, n) = sum0(m, n) {}
(2) sum0(m, n) = 6 + sum1(m, n, i′) {i′=1}
(3) sum1(m, n, i) = 3 + sumc

1(m, n, i) {}
(4) sumc

1(m, n, i) = sum2(m, n, i) {i≤m}
(5) sumc

1(m, n, i) = 0 {i>m}
(6) sum2(m, n, i) = 4 + sum3(n, j′) + sum1(m, n, i′)

{j′ = i, i′ = i + 1}
(7) sum3(n, j) = 3 + sumc

3(n, j) {}
(8) sumc

3(n, j) = sum4(n, j) {j≤n}
(9) sumc

3(n, j) = 0 {j>n}
(10) sum4(n, j) = 9 + sum3(n, j′) {j′=j+1}

Figure 6: A Simplified version of the CES of Fig. 4

cm vars(bi).

Once the backwards propagation is done, we add the guard
variables to V (line 25) and project V on the head variables
(line 26). At the end, if the computed set of relevant ar-
guments is not included in the previous one (line 27), then
the new set is stored (line 28), and each rule q that calls p

is scheduled for re-analyses (lines 29-30). Note in particu-
lar the use of =sh which means that the computed set is
closed under sharing information, i.e., if a variable v is in
the set, then all variables that might share with v a data
structure on the heap are also included in the set. This in-
formation can be computed using sharing analysis [26]. The
main procedure slicing performs the fixpoint by means of a
queue Q. It initializes the values of each slice(p) to empty
set, and schedules each p to be analyzed with respect to an
empty set of output variables.

As an example, applying backward slicing on the rule-
based program of Fig.3 (after eliminating the stack vari-
ables) results in the following set of relevant variables for
the different rules:

sum ={m, n} sum1={m, n, i} sum3={n, j}
sum0={m, n} sumc

1={m, n, i} sumc
3={n, j}

sum2={m, n, i} sum4={n, j}

which can be used to simplify the CES in Fig. 4 to the one
in Fig. 6.

Note that an interesting feature of our slicing problem, is
that any set of relevant variables can be safely used to refine
the CES, even if it is not a superset (i.e., safe approximation)
of the actual relevant variables. This is due to the fact that
removing arguments from the CES can only increase the
cost, and therefore we are approximating the CES in the
safe direction since we are interested in computing upper
bounds. Indeed, in our current implementation we ignore
the information flow (line 13) and the sharing information
in =sh which in turn might result in unsafe approximation
of the relevant variables, but in practice we still get very
useful sets of relevant variables.

6. EXPERIMENTS AND DISCUSSION
We have incorporated the analysis techniques for the elim-

ination of useless stack and program variables as described
in the paper in a cost analyzer for JBC programs.

Table 1 shows the effect of eliminating redundant stack
and irrelevant local variables on a series of benchmarks for
which our system can infer automatically CESs. We in-
clude classical recursive programs such as Factorial, Hanoi,
Fibonacci, MergeSort or QuickSort. Iterative programs Di-
vByTwo and Concat contain a single loop, while Sum, Mat-
Mult and BubbleSort are implemented with nested loops.

Benchmark #R #V SVE Slic Bth Rt
Polynomial 19 89 61 64 41 2.17
BinarySearch 15 115 78 83 52 2.21
DivByTwo 12 43 31 22 15 2.87
Indexes 29 232 169 155 105 2.21
EvenDigits 19 93 65 52 34 2.74
Factorial 11 31 21 20 13 2.38
ArrayReverse 12 65 46 31 17 3.82
Concat 15 108 71 64 34 3.18
Incr 40 177 136 104 75 2.36
ListReverse 12 63 46 32 20 3.15
Power 11 38 27 20 13 2.92
Search 26 137 105 73 52 2.63
MergeSort 26 212 156 134 87 2.44
QuickSort 26 226 166 159 106 2.13
Sum 15 101 75 55 37 2.73
ListInter 38 247 182 164 113 2.19
SelectSort 18 135 101 90 60 2.25
OrdSort 18 109 79 69 46 2.37
DoSum 29 155 111 87 57 2.72
BubbleSort 18 143 108 95 64 2.23
MatMult 18 191 144 94 56 3.41
Hanoi 12 49 35 13 7 7.00
Fibonacci 11 37 23 26 15 2.47

Table 1: Effect of removing useless variables

We also include programs written in object-oriented style,
like Polynomial or Incr, which contain object creation, vir-
tual invocation, etc. The remaining benchmarks are imple-
mented using data structures: ArrayReverse, MatMultVec-
tor, Search use arrays and BubbleSort and DoSum traverse
linked lists.

Column #R shows the number of rules in the rule-based
representation of each program. Note that, for the case of
our running example Sum, column #V contains 15 instead
of 10, as shown in Fig. 3. This is because in Fig. 3 we have
omitted some calls to continuations in order to simplify the
presentation. Column #V shows the total number of dif-
ferent variables (including both stack and local variables) in
the rule-based representation after applying SSA. We show
this figure because, for efficiency, our prototype always gen-
erates the rule-based representation with SSA, since SSA is
required in order to perform size analysis. The next three
columns, namely SVE, Slic, Bth, show the number of re-
maining variables after performing different removal tech-
niques. More precisely, in column SVE, we have performed
stack variable elimination but not removal of cost-irrelevant
variables (slicing). In the column Slic, slicing is done but
not stack variable elimination. It should be noted that slic-
ing can sometimes remove redundant stack variables, which
explains the significantly high variable removal in this case
as well. Finally, Bth combines the result of applying simul-
taneously both techniques. Clearly, the effect of applying
both techniques is not, in terms of the number of removed
variables, the sum of the two analyses, since some variables
can be removed by both SVE and Slic. The last column
Rt shows #V / Bth. It can be observed that the number
of variables is importantly reduced. The overall reduction
ranges from 2.13 in the case of Quicksort , to 7 in the case
of Hanoi . This is explained in part by the fact that lo-
cal variables are always pushed on the stack by means of a
load instruction such that the corresponding stack variable
can be removed by unifying it with the local variable, as
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explained in Sec. 4.
Finally, although not experimentally evaluated yet, re-

ducing the number of variables will improve analysis per-
formance. This is especially important for the case of cost
analysis, where size analysis is a costly phase which has to
track calls-to size relations between variables. Removing ir-
relevant variables from the recursive representation will thus
bring us an efficiency improvement in size analysis and con-
sequently in the overall analysis time. Moreover, the elimi-
nation of redundant stack variables is potentially beneficial
for any analysis of Java bytecode.
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