The COSTA Cost and Termination Analyzer
for Java Bytecode and its Web Interface

E. Albert!, P. Arenas', S. Genaim?,
G. Puebla?, D. Ramirez?, and D. Zanardini®

L DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

COSTA is a research prototype which performs automatic program analysis and
which is able to infer cost [?] and Termination [?] information about Java byte-
code programs. The system receives as input a bytecode program and a cost model
chosen from a selection of resource descriptions, and tries to bound the resource
consumption of the program with respect to the given cost model. COSTA provides
several non-trivial notions of resource, such as the amount of memory allocated
on the heap [?], the number of bytecode instructions executed, the number of bil-
lable events (such as sending a text message on a mobile phone) executed by the
program. When performing cost analysis, COSTA produces a cost equation system,
which is an extended form of recurrence relations. In order to obtain a closed (i.e.,
non-recursive) form for such recurrence relations which represents an upper bound,
COSTA includes a dedicated solver [?]. An interesting feature of COSTA is that it uses
pretty much the same machinery for inferring upper bounds on cost as for proving
termination (which also implies the boundedness of any resource consumption).

In the proposed demo we will show the recently developed COSTA web interface.
It allows users to try out the system on a set of representative examples, and
also to upload their own bytecode programs. As the behaviour of COSTA can be
customized using a relatively large set of options, the web interface allows two
different alternatives for choosing the values for such options.

Fle £t View sty Bookmarks Tols Heb

Fle Edit View History 3oockmarks Tooks Help

& @ () T hupslocahosy-danaicostatusers phpre [+) [G]ooc]| | @%@ 0 4 [rtosomshost-danacstausesphptecmplessmscoen +] [G] 0 [&
s | | COSTA: COST and Termination Analyzer for Java Bytecode /|
COSTA: COST and Termination Analyzer for | Home | Analyzer | Dacumentation | About |
JaVa Bytecode Step 1: Class File ﬁc/cener\c\ntersecmn dlasd
| Home | Analyzer | Documentation | About | Step 2: Select the user interface ¢ Automatic * Manual
Step 1: Class File Fo/Gener\c\ntersect\on clasg Step 3: Choose the option values for the analysis.
Step 2: Select the user interface ¢ Automatic © Manual
MANUAL OPTIONS
Step 3: Choose the option values for the analysis. o Specify the cost madel & Nuribe- efintructiors Hezp Numaer o° calls
o Consider Explicit exceptions? © Vs ¢ No
AUTOMATIC OPTIONS o Consider Implicit exceptions (thrown by the Virtual Maching)? & Yes © \g
Select analysis level (from least precise to most precise) # Analyze the code of standard lbraries? Off Cn
(F off covszarts are cutinsteac]
 Extracts loops?(the main CFG plus one CFG for every loop) © Yes © No
o Level -3 © o Compute abstract answers? & On " Cff
e level-2 © I on. a fxpeit is per‘ormad ko compute arswer informat o7,
oLlevel-1 ¢ I¥off, ony cbstract complstior is perfotned n size enalysis
" : 5 e y i P i
o level 0 & (Default) : Enahle t.he slicing &.7f cu:l‘ure:-evam variables in the rule-based-representation? * ves © No
nable sign analysis? © Vs ¢ No
olevellC @ Enable nullity analysis? & “es ¢ Ho
o Level 27 # Propagate constant values obtained during the size analysis? & Yes No
olevel3C o Keep the cost of external methods as constants? & Yes Na
Level 40 # Save the UB of the entry method to file ? & No (Yes
¢ Level o Load the previously saved upper bounds from file, and use them as assertions? & No " ves
Execute class analysis at the level of variables? & &5 € No
Analysis
Analysis
| Home | Analyzer | Documentation | About | 0 .
COSTA - version 1.0 I+ | Home | Analyzer | Documentation | About | g
Done Dons

Fig. 1. Two ways of setting values for analysis options

The first alternative, which we call automnatic (see Figure 1, left-hand side),
allows the user to choose from a range of possibilities which differ in the analysis
accuracy and overhead. Starting from level 0, the default, we can increase the analy-
sis accuracy (and overhead) by using levels 1 through 3. We can also reduce analysis
overhead (and accuracy) by going down to levels -1 through -3. All this, without
requiring the user to understand the different options implemented in the system
and their implications in analysis accuracy and overhead. The second alternative is
called manual (see Figure 1, right-hand side) and it is meant for the expert user.
There, the user has access to all of the analysis options available, allowing a fine-
grained control over the behaviour of the analyzer. Some of these options include
whether to analyze the Java standard libraries, to take exceptions into account, to
perform or not a number of pre-analyses, to write/read analysis results to file in
order to reuse them in later analyses, etc. In the demo, we will show analyses using
different cost models and also analyze applications for both Standard Edition Java
and Micro Edition Java (in particular, for the MIDP profile for mobile phones).

File Edit View History Bookmarks TIools Help
& - - @& (2} |1 httpylocalhost/~ dianajcosta/analyse php | = | b+ | [[Gl-]

Getting Started [5y Latest BBC Headlines | | diccionario infes | | Hotmail
g

COSTA: COST and Termination Analyzer for Java Bytecode

Home | Analyzer | Documentation | About

Result

S CFGs built in 97 mseconds
RER built in 65 mseconds. It consists of 146 rules
RER optimized. It consists of 113 rules
Applying abstract compilation ... Done
Abstract Answer Analysis performed in S60 mseconds
CESs Generated. They contain 109 equations
sSolving CES with PUBS ... Done
The Upper Bound for 'misc/DemofGenericIntersection_main([Ljavaslang/String;)Vv' is
max ([12*max([13+c(Comparable_compareTo(Object)I)+c(ArrayList _add(Object)Z),
S+c(Comparable_compareTo(Object)T)])+6+max([9, S+c(Comparable_compareTo(Object)1)])
+(12*max([13+c(Comparable_compareTo(Object)I)+c(ArrayList_add(Object)Z),
Stc(Comparable_compareTo(Object)T)1)+4)+max([9,&+c(Comparable compareTo(cbject)T)])
+{otc(Integer_(I)v)+12*(10+c(Integer_(I)V))+12)+c(Integer_(I)V)+
(17+c({Object_()V))+cl{Arraylist ()V),12*(16+c(Integer (I)V)}+12+
clInteger_(I1)v)+(12+c(Object_()v))+c(ArrayList_()v)1)

Terminates?: yes

number of methods to check upper bound: S
Pane

Fig. 2. Results

Figure 2 shows the output of COSTA on an example program. In addition to
showing the result of termination analysis and an upper bound on the execution
cost, some data is displayed about the intermediate steps performed by the analyzer.
In this case, the program is proved to terminate and an upper bound is shown which
includes the cost of calls to several Java library methods.

