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Abstract. Static analysis which takes into account the value of data
stored in the heap is typically considered complex and computationally
intractable in practice. Thus, most static analyzers do not keep track of
object fields (or fields for short), i.e., they are field-insensitive. In this
paper, we propose locality conditions for soundly converting fields into
local variables. This way, field-insensitive analysis over the transformed
program can infer information on the original fields. Our notion of local-
ity is context-sensitive and can be applied both to numeric and reference
fields. We propose then a polyvariant transformation which actually con-
verts object fields meeting the locality condition into variables and which
is able to generate multiple versions of code when this leads to increasing
the amount of fields which satisfy the locality conditions. We have im-
plemented our analysis within a termination analyzer for Java bytecode.

1 Introduction

When data is stored in the heap, such as in object fields (numeric or references),
keeping track of their value during static analysis becomes rather complex and
computationally expensive. Analyses which keep track (resp. do not keep track)
of object fields are referred to as field-sensitive (resp. field-insensitive). In most
cases, neither of the two extremes of using a fully field-insensitive analysis or
a fully field-sensitive analysis is acceptable. The former produces too imprecise
results and the latter is often computationally intractable. There has been sig-
nificant interest in developing techniques that result in a good balance between
the accuracy of analysis and its associated computational cost. A number of
heuristics exist which differ in how the value of fields is modeled. A well-known
heuristics is field-based analysis, in which only one variable is used to model all
instances of a field, regardless of the number of objects for the same class which
may exist in the heap. This approach is efficient, but loses precision quickly.

Our work is inspired on a heuristic recently proposed in [3] for numeric fields.
It is based on analyzing the behaviour of program fragments (or scopes) rather
than the application as a whole, and modelling only those numeric fields whose
behaviour is reproducible using local variables. In general, this is possible when
two sufficient conditions hold within the scope: (a) the memory location where
the field is stored does not change, and (b) all accesses (if any) to such memory
location are done through the same reference (and not through aliases). In [3], if



both conditions hold, instructions involving the field access can be replicated by
equivalent instructions using a local variable, which we refer to as ghost variable.
This allows using a field-insensitive analysis in order to infer information on the
fields by reasoning on their associated ghost variables.

Unfortunately, the techniques proposed in [3] for numeric fields are not ef-
fective to handle reference fields. Among other things, tracking reference fields
by replicating instructions is problematic since it introduces undesired aliasing
between fields and their ghost variables. Very briefly, to handle reference fields,
the main open issues, which are contributions of this paper, are:

– Locality condition: the definition (and inference) of effective locality condi-
tions for both numeric and reference fields. In contrast to [3], our locality
conditions are context-sensitive and take must-aliasing context information
into account. This allows us to consider as local certain field signatures which
do not satisfy the locality condition otherwise.

– Transformation: an automatic transformation which converts object fields
into ghost variables, based on the above locality. We propose a combination
of context-sensitive locality with a polyvariant transformation which allows
introducing multiple versions of the transformed scopes. This leads to a
larger amount of field signatures which satisfy their locality condition.

Our approach is developed for object-oriented bytecode, i.e., code compiled for
virtual machines such as the Java virtual machine [10] or .NET. It has been
implemented in the costa system [4], a cost and termination analyzer for Java
Bytecode. Experimental evaluation has been performed on benchmarks which
make extensive use of object fields and some of them use common patterns in
object-oriented programming such as enumerators and iterators.

2 Motivation: Field-Sensitive Termination Analysis

Automated techniques for proving termination are typically based on analyses
which track size information, such as the value of numeric data or array indexes,
or the size of data structures. Analysis should keep track of how the size of the
data involved in loop guards changes when the loop goes through its iterations.
This information is used for determining (the existence of) a ranking function for
the loop, which is a function which strictly decreases on a well-founded domain at
each iteration of the loop. This guarantees that the loop will be executed a finite
number of times. For numeric data, termination analyzers rely on a value analysis
which approximates the value of numeric variables (e.g. [7]). Some field-sensitive
value analyses have been developed over the last years (see [11,3]). For heap-
allocated data structures, path-length [15] is an abstract domain which provides
a safe approximation of the length of the longest reference chain reachable from
the variables of interest. This allows proving termination of loops which traverse
acyclic data structures such as linked lists, trees, etc.

Example 1. Our motivating example is shown in Fig. 1. This is the simplest
example we found to motivate all aspects of our proposal. By now, we focus
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class Iter implements Iterator {
List state;
List aux;

boolean hasNext() {
return (this.state != null);
}

Object next() {
List obj = this.state;
this.state = obj.rest;
return obj;
}

}

class Aux {
int f;

}

class List {
int data;
List rest;

}

class Test {
static void m(Iter x, Aux y, Aux z){
while (x.hasNext()) x.next();
y.f--;z.f--;
}
static void r(Iter x, Iter y, Aux z){
Iter w=null;
while (z.f > 0) {
if ( z.f > 10 ) w=x else w=y;
m(w,z,z);
}
}

static void q(Iter x, Aux y, Aux z){
m(x,y,z);
}

static void s(Iter x, Iter y, Aux w, Aux z){
q(y,w,z);
r(x,y,z);
}

}

Fig. 1. Iterator-like example.

on method m. In object-oriented programming, the iterator pattern (also enu-
merator) is a design pattern in which the elements of a collection are traversed
systematically using a cursor. The cursor points to the current element to be
visited and there is a method, called next, which returns the current element and
advances the cursor to the next element, if any. In order to simplify the example,
the method next in Fig. 1 returns (the new value of) the cursor itself and not the
element stored in the node. The important point, though, is that the state field
is updated at each call to next. These kind of traversal patterns pose challenges
in static analysis and effective solutions are required (see [18]). The challenges
are mainly related to two issues: (1) Iterators are usually implemented using an
auxiliary class which stores the cursor as a field (e.g., the “state” field). Hence,
field-sensitive analysis is required; (2) The cursor is updated using a method call
(e.g., within the “next” method). Hence, inter-procedural analysis is required.

We aim at inferring that the while loop in method m terminates. This can be
proven by showing that the path-length of the structure pointed to by the cursor
(i.e., x.state) decreases at each iteration. Proving this automatically is far from
trivial, since many situations have to be considered by a static analysis. For
example, if the value of x is modified in the loop body, the analysis must infer
that the loop might not terminate since the memory location pointed to by
x.state changes (see condition (a) in Sec. 1). The path-length abstract domain,
and its corresponding abstract semantics, as defined in [15] is field-insensitive in
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the sense that the elements of such domain describe path-length relations among
local variables only and not among reference fields. Thus, analysis results do not
provide explicit information about the path-length of reference fields.

Example 2. In the loop in method m in Fig. 1, the path-length of x cannot be
guaranteed to decrease when the loop goes through its iterations. This is because
xmight reach its maximal chain through the field aux and not state. However, the
path-length of x.state decreases, which in turn can be used to prove termination
of the loop. To infer such information, we need an analysis which is able to model
the path-length of x.state and not that of x. Namely, we need a field-sensitive
analysis based on path-length, which is one of our main goals in this paper.

The basic idea in our approach is to replace field accesses by accesses to the corre-
sponding ghost variables whenever they meet the locality condition which will be
formalized later. This will help us achieve the two challenges mentioned above:
(1) make the path-length analysis field-sensitive, (2) have an inter-procedural
analysis by using ghost variables as output variables in method calls.

3 A Simple Imperative Bytecode

We formalize our analysis for a simple rule-based imperative language [3] which
is similar in nature to other representations of bytecode [17,9]. A rule-based
program consists of a set of procedures and a set of classes. A procedure p with
k input arguments x̄ = x1, . . . , xk and m output arguments ȳ = y1, . . . , ym is
defined by one or more guarded rules. Rules adhere to this grammar:

rule ::= p(〈x̄〉, 〈ȳ〉) ←g, b1, . . . , bn
g ::= true | exp

1
op exp

2
| type(x,C)

b ::= x:=exp | x :=new C |x :=y .f | x .f :=y | q(〈x̄ 〉, 〈ȳ〉)
exp ::= null | aexp

aexp ::= x | n | aexp−aexp | aexp+aexp | aexp∗aexp | aexp/aexp
op ::= > | < | ≤ | ≥ | = | 6=

where p(〈x̄〉, 〈ȳ〉) is the head of the rule; g its guard, which specifies conditions
for the rule to be applicable; b1, . . . , bn the body of the rule; n an integer; x and
y variables; f a field name, and q(〈x̄〉, 〈ȳ〉) a procedure call by value. The lan-
guage supports class definition and includes instructions for object creation, field
manipulation, and type comparison through the instruction type(x,C), which
succeeds if the runtime class of x is exactly C. A class C is a finite set of typed
field names, where the type can be integer or a class name. The key features of
this language which facilitate the formalization of the analysis are: (1) recursion
is the only iterative mechanism, (2) guards are the only form of conditional,
(3) there is no operand stack, (4) objects can be regarded as records, and the
behavior induced by dynamic dispatch in the original bytecode program is com-
piled into dispatch rules guarded by a type check and (5) rules may have multiple
output parameters which is useful for our transformation. The translation from
(Java) bytecode to the rule-based form is performed in two steps [4]. First, a
control flow graph is built. Second, a procedure is defined for each basic block
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1©hasNext(〈this〉, 〈r〉)←
s0:=this.state,
hasNext1(〈this, s0〉, 〈r〉).

2©hasNext1(〈this, s0〉, 〈r〉)←
s0 = null, r:=0.

3©hasNext1(〈this, s0〉, 〈r〉)←
s0 6= null, r:=1.

4©next(〈this〉, 〈r〉)←
obj:=this.state, s0:=obj.rest ,
this.state:=s0, r:=obj.

5©m(〈x, y, z〉, 〈〉)←
while(〈x〉, 〈〉),
s0:=y.f, s0:=s0−1, y.f :=s0,
s0:=z.f, s0:=s0−1, z.f :=s0.

6©while(〈x〉, 〈〉)←
hasNext(〈x〉, 〈s0〉),
m1(〈x, s0〉, 〈〉).

7©m1(〈x, s0〉, 〈〉)←
s0 6= null,
next(〈x〉, 〈s0〉),
while(〈x〉, 〈〉).

8©m1(〈x, y, z, s0〉, 〈〉)←
s0=null.

9©r(〈x, y, z〉, 〈〉)←
w:=null,
r1〈x, y, z, w〉, 〈〉).

10©r1(〈x, y, z, w〉, 〈〉)←
s0:=z.f,
r2(〈x, y, z, w, s0〉, 〈〉).

11©r2(〈x, y, z, w, s0〉, 〈〉)←
s0 > 0, s0:=z.f,
r3(〈x, y, z, w, s0〉, 〈〉).

12©r2(〈x, y, z, w, s0〉, 〈〉)←
s0 ≤ 0.

13©r3(〈x, y, z, w, s0〉, 〈〉)←
s0 > 10, w:=x,
r4(〈x, y, z, w〉, 〈〉).

14©r3(〈x, y, z, w, s0〉, 〈〉)←
s0 ≤ 10, w:=y,
r4(〈x, y, z, w〉, 〈〉).

15©r4(〈x, y, z, w〉, 〈〉)←
m(〈x, z, z〉, 〈〉),
r1(〈x, y, z, w〉, 〈〉).

16©q(〈x, y, z〉, 〈〉)←
m(〈x, y, z〉, 〈〉).

17©s(〈x, y, z, w〉, 〈〉)←
q(〈y, w, z〉, 〈〉),
r(〈x, y, z〉, 〈〉).

Fig. 2. Intermediate representation of running example in Fig. 1.

in the graph and the operand stack is flattened by considering its elements as
additional local variables. For simplicity, our language does not include advanced
features of Java, but our implementation deals with full sequential Java byte-
code. The execution of rule-based programs mimics standard bytecode [10]. A
thorough explanation of the latter is outside the scope of this paper.

Example 3. Fig. 2 shows the rule-based representation of our running example.
Procedure m corresponds to method m, which first invokes procedure while as
defined in rules 6©− 8©. Observe that loops are extracted into separate procedures.
Upon return from the while loop, the assignment s0:=y.f pushes the value of
the numeric field y.f on the stack. Then, this value is decremented by one and
the result is assigned back to y.f . When a procedure is defined by more than one
rule, each rule is guarded by a (mutually exclusive) condition. E.g., procedure r2
is defined by rules 11© and 12©. They correspond to checking the condition of the
while loop in method r and are guarded by the conditions s0 > 0 and s0 ≤ 0.
In the first case, the loop body is executed. In the second case execution exits
the loop. Another important observation is that all rules have input and output
parameters, which might be empty. The analysis is developed on the intermediate
representation, hence all references to the example in the following are to this
representation and not to the source code.

4 Preliminaries: Inference of Constant Access Paths

When transforming a field f into a local variable in a given code fragment, a
necessary condition is that whenever f is accessed, using x.f , during the exe-
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cution of that fragment, the variable x must refer to the same heap location
(see condition (a) in Sec. 1). This property is known as reference constancy (or
local aliasing) [3,1]. This section summarizes the reference constancy analysis
of [3] that we use in order to approximate when a reference variable is constant
at a certain program point. Since the analysis keeps information for each pro-
gram point, we first make all program points unique as follows. The k-th rule
p(〈x̄〉, 〈ȳ〉)←g, bk

1
, . . . , bkn has n+1 program points. The first one, (k, 1), after the

execution of the guard g and before the execution of b1, until (k, n+1) after the
execution of bn. This analysis receives a code fragment S (or scope), together
with an entry procedure p(〈x̄〉, 〈ȳ〉) from which we want to start the analysis.
It assumes that each reference variable xi points to an initial memory location
represented by the symbol li, and each integer variable has the (symbolic) value
ℓnum representing any integer. The result of the analysis associates each vari-
able at each program point with an access path. For a procedure with n input
arguments, the entry is written as p(l1, . . . , ln).

Definition 1 (access path). Given a program P with an entry p(l1, . . . , ln), an
access path ℓ for a variable y at program point (k, j) is a syntactic construction
which can take the forms:

– ℓany. Variable y might point to any heap location at (k, j).
– ℓnum (resp. ℓnull). Variable y holds a numeric value (resp. null) at (k, j).
– li.f1. . .fh. Variable y always refers to the same heap location represented by

li.f1. . .fh whenever (k, j) is reached.

we use acc path(y, bkj ) to refer to the access path of y before instruction bkj .

Intuitively, the access path li.f1. . .fh of y refers to the heap location which results
from dereferencing the i-th input argument xi using f1. . .fh in the initial heap.
In other words, variable y must alias with xi.f1. . .fn (w.r.t. to the initial heap)
whenever the execution reaches (k, j).

Example 4. Consider an execution which starts from a call to procedure m in
Fig. 2. During such execution, the reference x is constant. Thus, x always refers
to the same memory location within method m, which, in this case, is equal
to the initial value of the first argument of m. Importantly, the content of this
location can change during execution. Indeed, x is constant and thus x .state
always refers to the same location in the heap. However, the value stored at
x .state (which is in turn a reference) is modified at each iteration of the while
loop. In contrast, reference x .state.rest is not constant in m, since this.state
refers to different locations during execution. Reference constancy analysis is the
component that automatically infers this information. More concretely, applying
it to rules 1© − 3© w.r.t. the entry hasNext(l1 ), it infers that at program point
(1, 1) the variable this is constant and always refers to l1. Applying it to 4©, it
infers that: at program points (4, 1), (4, 3) and (4, 4) the variable this is constant
and always refers to l1; at (4, 2) variable obj is constant and always refers to
l1 .state; and at (4, 3), variable s0 is constant and always refers to l1 .state.rest .
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Clearly, references are often not globally constant, but they can be constant when
we look at smaller fragments. For example, when considering an execution that
starts from m, i.e., m(l1, l2, l3), then variable this in next and hasNext always
refers to the same heap location l1. However, if we consider an execution that
starts from s, i.e., s(l1, l2, l3, l4), then variable this in next and hasNext might
refer to different locations l1 or l2, depending on how we reach the corresponding
program points (through r or q). As a consequence, from a global point of view,
the accesses to state are not constant in such execution, though they are constant
if we look at each sub-execution alone. Fortunately, the analysis can be applied
compositionally [3] by partitioning the procedures (and therefore rules) of P
into groups which we refer to as scopes, provided that there are no mutual calls
between scopes. Therefore, the strongly connected components (SCCs) of the
program are the smallest scopes we can consider. In [3], the choice of scopes
directly affects the precision and an optimal strategy does not exist: sometimes
enlarging one scope might improve the precision at one program point and make
it worse at another program point. Instead, in this paper, due to the context-
sensitive nature of the analysis, information is propagated among the scopes and
the maximal precision is guaranteed when scopes are as small as possible, i.e.,
at the level of SCCs. In the examples, sometimes we enlarge them to simplify
the presentation. Moreover, we assume that each SCC has a single entry, this is
not a restriction since otherwise the analysis can be repeated for each entry.

Example 5. The rules in Fig. 2 can be divided into the following scopes: ShasNext =
{hasNext , hasNext1}, Snext = {next}, Sm = {m,while,m1}, Sr = {r, r1, r2, r3, r4},
Sq = {q} and Ss = {s}. A possible reverse topological order for the scopes of
Ex. 5 is ShasNext , Snext , Sm, Sr, Sq and Ss. Therefore, compositional analysis
starts from ShasNext and Snext as explained in Ex. 4. Then, Sm is analyzed w.r.t.
the initial call m(l1, l2, l3), next, Sr w.r.t. r(l1, l2, l3) and so on. When the call
from r to m is reached, the analysis uses the reference constancy inferred for m
and adapts it to the current context. This way, the reference to state is proven
to be constant, as we have justified above. As expected, the analysis cannot
guarantee that the access to rest is constant.

In order to decide whether a field f can be considered local in a scope S, we
have to inspect all possible accesses to f in any possible execution that starts
from the entry of S. Note that these accesses can appear directly in S or in a
scope that is reachable from it (transitive scope). We use S∗ to refer to the union
of S and all other scopes reachable from S, and S(p) (resp. S(bkj )) to refer to the

scope in which the procedure p (resp. instruction bkj ) is defined (resp. appears).
We distinguish between access for reading the field value from those that modify
its value. Given a scope S and a field signature f , the set of read (resp. write)
access paths for f in S, denoted R(S, f) (resp. W (S, f)), is the set of access paths
of all variables y used for reading (resp. modifying) a field with the signature f ,
i.e., x:=y.f (resp. y.f :=x), in S∗. Note that if S has calls to other scopes, for
each call bkj ≡ q(〈w̄〉, 〈z̄〉) ∈ S such that S(q) 6= S, we should adapt the read
(resp. write) access paths R(S(q), f) (resp. W (S(q), f)) to the calling context
by taking into account aliasing information. Let us see an example.
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Example 6. The read and write sets for f , state and rest w.r.t. the scopes of
Ex. 5 are:

R(Si, f) R(Si, state) R(Si, rest) W (Si, f) W (Si, state) W (Si, rest)

ShasNext {} {l1} {} {} {} {}

Snext {} {l1} {l1.state} {} {l1} {}

Sm {l2, l3} {l1} {ℓany} {l2, l3} {l1} {}

Sr {l3} {ℓany} {} {l3} {ℓany} {}

Sq {l2, l3} {l1} {ℓany} {l2, l3} {l1} {}

Ss {l3, l4} {ℓany} {ℓany} {l3, l4} {ℓany} {}

Note that in Sm, we have two different read access paths l2 and l3 to f . However,
when we adapt this information to the calling context from r, they become the
same due to the aliasing of the last two arguments in the call to m from r.
Instead, when we adapt this information to the calling context from q, they
remain as two different access paths. Finally, when computing the sets for Ss,
since we have a call to q followed by one to r, we have to merge their information
and assume that there are two different access paths for f that correspond to
those through the third and fourth argument of s.

5 Locality Conditions for Numeric and Reference Fields

Intuitively, in order to ensure a sound monovariant transformation, a field sig-
nature can be considered local in a scope S if all read and write accesses to it in
all reachable scopes (i.e., S∗) are performed through the same access path.

Example 7. According to the above intuition, the field f is not local in m since
it is not guaranteed that l2 and l3 (i.e., the access paths for the second and
third arguments) are aliased. Therefore, f is not considered as local in Sr (since
Sm ∈ S∗

r ) and the termination of the while loop in r cannot be proven. However,
when we invoke m within the loop body of r, we have knowledge that they are
actually aliased and f could be considered local in this context.

As in [3], when applying the reference constancy analysis (and computing the
read and write sets), we have assumed no aliasing information about the argu-
ments in the entry to each SCC, i.e., we do not know if two (or more) input
variables point to the same location. Obviously, this assumption has direct con-
sequences on proving locality, as it happens in the example above. The following
definition introduces the notion of call pattern, which provides must aliasing
information and which will be used to specify entry procedures.

Definition 2 (call pattern). A call pattern ρ for a procedure p with n argu-
ments is a partition of {1, . . . , n}. We denote by ρi the set X ∈ ρ s.t. i ∈ X.

Intuitively, a call pattern ρ states that each set of arguments X ∈ ρ are guaran-
teed to be aliased. In what follows, we denote the most general call pattern as
ρ

⊤
= {{1}, . . . , {n}}, since it does not have any aliasing information.

Example 8. The call pattern for m when called from r is ρ={{1}, {2, 3}}, which
reflects that the 2nd and 3rd arguments are aliased. The call pattern for m when
called from q is ρ

⊤
in which no two arguments are guaranteed to be aliased.
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The reference constancy analysis [3] described in Sec. 4 is applied w.r.t. ρ
⊤
.

In order to obtain access path information (and read and write sets) w.r.t. a
given initial call pattern ρ, a straightforward approach is to re-analyze the given
scope taking into account the aliasing information in ρ. Since the analysis is
compositional, another approach is to reuse the read and write access paths
inferred w.r.t. ρ

⊤
and adapt them (i.e., rename them) to each particular call

pattern ρ. This is clearly more efficient since we can analyze the scope once and
reuse the results when new contexts have to be considered. In theory, re-analyzing
can be more precise, but in practice reusing the results is precise enough for our
needs. The next definition provides a renaming operation. By convention, when
two arguments are aliased, we rename them to have the same name of the one
with smaller index. This is captured by the use of min.

Definition 3 (renaming). Given a call pattern ρ and an access path ℓ ≡
li.f1 . . . fn, ρ(ℓ) is the renamed access path lk.f1 . . . fn where k = min(ρi). For
a set of access paths A, ρ(A) is the set obtained by renaming all elements of A.

Example 9. Renaming the set of access paths {l2, l3} obtained in Ex. 7 w.r.t. ρ
of Ex. 8 results in {l2}. This is because ρ(l2)=l2 and ρ(l3)=l2, by the convention
of min above. It corresponds to the intuition that when calling m from r, all
accesses to field f are through the same memory location, as explained in Ex. 7.

Renaming is used in the context-sensitive locality condition to obtain the read
and write sets of a given scope w.r.t. a call pattern, using the context-insensitive
sets. It corresponds to the context-sensitive version of condition (b) in Sec. 1.

Definition 4 (general locality). A field signature f is local in a scope S w.r.t.
a call pattern ρ, if ρ(R(S, f)) ∪ ρ(W (S, f)) = {ℓ} and ℓ 6= ℓany.

Example 10. If we consider Sm w.r.t. the call pattern {{1}, {2, 3}} then f be-
comes local in Sm, since l2 and l3 refer to the same memory location and, there-
fore, it is local for Sr. Considering f local in Sr is essential for proving the
termination of the while loop in r. This is because by tracking the value of f we
infer that the loop counter decreases at each iteration. However, making f local
in all contexts is not sound, as when x and y are not aliased, then each field de-
creases by one, and when there are aliases, it decreases by two. Hence, in order to
take full advantage of context-sensitivity, we need a polyvariant transformation
which generates two versions for procedure m (and its successors).

An important observation is that, for reference fields, it is not always a good
idea to transform all fields which satisfy the general locality condition above.

Example 11. By applying Def. 4, both reference fields state and rest are local in
Snext . Thus, it is possible to convert them into respective ghost variables vs (for
state) and vr (for rest). Intuitively, rule 4© in Ex. 3 would be transformed into:

next(〈this , vs , vr 〉, 〈vs , vr 〉)← obj:=vs, s0:=vr, vs:=s0, r:=obj.

For which we cannot infer that the path-length of vs in the output is smaller than
that of vs in the input. In particular, the path-length abstraction approximates
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the effect of the instructions by the constraints {obj=vs, s0=vr, v
′

s=s0, r=obj}.
Primed variables are due to a single static assignment. The problem is that the
transformation replaces the assignment s0:=obj.rest with s0:=vr. Such assign-
ment is crucial for proving that the path-length of vs decreases at each call to
next. If, instead, we transform this rule w.r.t. the field state only:

next(〈this , vs〉, 〈r , vs〉)←obj :=vs , s0 :=obj .rest , vs :=s0 , r :=obj .

and the path-length abstraction approximates the effect of the instructions by
{obj=vs, s0<obj, v′s=s0, r=obj} which implies v′s<vs. Therefore, termination (of
the corresponding loop) can be proven relying only on the field-insensitive version
of path-length. Note that, in the second constraint, when accessing a field of an
acyclic data structure, the corresponding path-length decreases.

Now we introduce a locality condition which is more restrictive than that
in Def. 4, called reference locality. This condition is interesting because it only
holds for field accesses which perform heap updates, but it does not hold for
other cases. Thus, it often solves the problem of too aggressive transformation,
shown above. This is achieved by requiring that the field signature is both read
and written in the scope. Intuitively, this heuristics is effective for tracking the
references that are used as cursors for traversing the data structures and not
reference fields which are part of the data structure itself.

Definition 5 (reference locality). A field signature f is local in a scope S
w.r.t. a call pattern ρ, if ρ(R(S, f)) = ρ(W (S, f)) = {ℓ} and ℓ 6= ℓany.

While reference locality is more effective than general locality for reference fields,
in the case of numeric fields, general locality is more appropriate than reference
locality. For example, numeric fields are often used to bound the loop iterations.
For these cases, reference locality is not sufficient, since the field is read but
not updated. Since numeric and reference fields can be distinguished by their
signature, we apply general locality to numeric fields and reference locality to
reference fields without problems. In what follows, we use locality to refer to
either general or reference locality, according to the corresponding field signature.

Example 12. Field rest is not local in Snext , according to Def. 5. Field state is
local in Snext and Sm, but not in ShasNext .

6 Polyvariant Transformation of Fields to Local Variables

Our transformation of object fields to local variables is performed in two steps.
First, we infer polyvariance declarations which indicate the (multiple) versions we
need to generate of each scope to achieve a larger amount of field signatures which
satisfy their locality condition. Then, we carry out a (polyvariant) transformation
based on the polyvariance declarations.

We first define an auxiliary operation which, given a scope S and a call
pattern ρ, infers the induced call patterns to the external procedures.
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Definition 6 (induced call pattern). Given a call pattern ρ for a scope S,
and a call bjk = q(〈x̄〉, 〈ȳ〉) ∈ S such that S(q) 6= S, the call pattern for S(q)

induced by bjk, denoted ρ(bjk), is obtained as follows:

(1) generate the tuple 〈ℓ1, . . . , ℓn〉 where ℓi = ρ(acc path(bjk, xi)); and

(2) i and h belong to the same set in ρ(bjk) if and only if ℓi = ℓh 6= ℓany.

The above definition relies on function acc path(a,s) defined in Def. 1.

Example 13. Consider the scope Sr and a call pattern ρ = {{1}, {2}, {3}}. The
call pattern induced by b15

1
≡ m(〈x, z, z〉, 〈〉) is computed as follows: (1) using

the access path information, we compute the access paths for the arguments
〈x, z, z〉 which in this case are 〈l1, l3, l3〉; (2) ρ(b

15

1
) is defined such that i and j

are in the same set if the access paths of the i-th and the j-th arguments are
equal. Namely, we obtain ρ(b15

1
) = {{1}, {2, 3}} as induced call pattern.

Now, we are interested in finding out the maximal polyvariance level which must
be generated for each scope. Intuitively, starting from the entry procedure, we
will traverse all reachable scopes in a top-down manner by applying the poly-
variance operator defined below. This operator distinguishes two sets of fields:

– Fpred is the set of field signatures which are local for the predecessor scope;

– Fcurr is the set of tuples which contain a field signature and its access path,
which are local in the current scope and not in the predecessor one.

This distinction is required since before calling a scope, the fields in Fcurr should
be initialized to the appropriate values, and upon exit the corresponding heap
locations should be modified. Those in Fpred do not require this initialization.
Intuitively, the operator works on a tuple 〈S,Fpred , ρ〉 formed by a scope identi-
fier S, a set of predecessor fields Fpred , and a call pattern ρ. At each iteration, a
polyvariance declaration of the form 〈S,Fpred ,Fcurr , ρ〉 is generated for the cur-
rent scope, where the local fields in Fcurr for context ρ are added. The operator
transitively applies to all reachable scopes from S.

Definition 7 (polyvariance). Given a program P with an entry procedure p
and call pattern ρ, the set of all versions in P is VP = Pol(〈S(p), ∅, ρ〉) s.t.

Pol(〈S,Fpred , ρ〉) = {〈S,Fpred ,Fcurr , ρ〉}
⋃

{Pol(〈S(q), F, ρ(bjk)〉) | b
k
j ≡ q(〈x̄〉, 〈ȳ〉) is external call in S}

where Fcurr and F are defined as follows:

– Fcurr = {〈f, ℓ〉 | f is local in S w.r.t. ρ with an access path ℓ and f /∈ Fpred},
– F = (Fpred ∪ {f | 〈f, ℓ〉 ∈ Fcurr}) ∩ fields(S∗(q)) where fields(S∗(q)) is the

set of fields that are actually accessed in S∗(q).

Since there are no mutual calls between any scopes, termination is guaranteed.
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1. Given F={f |〈f, ℓ〉∈Fcurr}, we let v̄={vf |f∈Fpred∪F} be a tuple of ghost
variable names.

2. Add arguments to internal calls: each head of a rule or a call
p(〈x̄〉, 〈ȳ〉) where p is defined in S is replaced by p·i(〈x̄ · v̄〉, 〈ȳ · v̄〉).

3. Transform field accesses: each access x.f is replaced by vf .
4. Handle external calls: let bkj ≡ q(〈x̄〉, 〈ȳ〉) ∈ S such that S(q) 6= S.

– Lookup the (unique) version 〈S(q),Fpred ∪ F, F ′, ρ(bkj )}〉 of S(q) that
matches the calling context and has a unique identifier id.

– Let v̄′ = {vf |f ∈ Fpred ∪ F} ∪ {vf |〈f, ℓ〉 ∈ F ′}.
Then, we transform bkj as follows:
(a) Initialization: ∀〈f, lh.f1 . . . fn〉 ∈ F ′ we add an initialization state-

ment (before the call) vf :=xh.f1 . . . fn.f ;
(b) Call: we add the modified call q·id(〈x̄ · v̄′〉, 〈ȳ · v̄′〉)
(c) Recovery: ∀〈f, lh.f1 . . . fn〉 ∈ F ′ we add a recovering statement (after

the call) xh.f1 . . . fn.f :=vf ;

Fig. 3. Transformation of a Polyvariance Declaration with Identifier i

Example 14. The polyvariance declarations obtained by iteratively applying Pol
starting from Pol(〈Ss, ∅, {{1}, {2}, {3}, {4}}〉) are:

Id S FpredFcurr ρ

1 Ss ∅ ∅ {{1},{2},{3},{4}}
2 Sq ∅ {l1.state}{{1},{2},{3}}
3 Sr ∅ {l3.f} {{1},{2},{3}}
4 Sm{f} {l1.state}{{1},{2,3}}

Id S Fpred Fcurr ρ

5 Sm {state}∅ {{1},{2},{3}}
6 Snext {state}∅ {{1}}
7 ShasNext{state}∅ {{1}}

Each line defines a polyvariance declaration 〈S,Fpred ,Fcurr , ρ〉 as in Def. 7. The
first column associates to each version a unique Id that will be used when trans-
forming the program. The only scope with more than one version is Sm, which
has two, with identifiers 4 and 5. The call patterns in such versions are different
and in this case they result in different fields being local.

In general, the set of polyvariance declarations obtained can include some ver-
sions which do not result in further fields being local. Before materializing the
polyvariant program, it is possible to introduce a minimization phase (see,
e.g., [13]) which is able to reduce the number of versions without losing op-
portunities for considering fields local. This can be done using well-known algo-
rithms [8] for minimization of deterministic finite automata.

Given a program P and the set of all polyvariance declarations VP , we can
proceed to transform the program. We assume that each version has a unique
identifier (a positive integer as in the example above) which will be used in order
to avoid name clashing when cloning the code. The instrumentation is done by
cloning the original code of each specification in VP . The clone for a polyvariance
declaration 〈S,Fpred ,Fcurr , ρ〉 ∈ VP with identifier i is done using the algorithm
in Fig. 3. The four steps of the instrumentation work as follows:
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(1) This step generates new unique variable names v̄ for the local heap locations
to be tracked in the scope S. Since the variable name vf is associated to
the field signature f (note that in bytecode field signatures include class and
package information), we can retrieve it at any point we need it later.

(2) This step adds the identifier i, as well as the tuple of ghost variables (gen-
erated in the previous step) as input and output variables to all rules which
belong to the scope S in order to carry their values around during execution.

(3) This step replaces the actual heap accesses (i.e., read and write field accesses)
by accesses to their corresponding ghost variables. Namely, an access x.f is
replaced by the ghost variable vf which corresponds to f .

(4) Finally, we transform external calls(i.e., calls to procedures in other scopes).
The main point is to consider the correct version id for that calling context
by looking at the polyvariance declarations. Then, the call to q is replaced
as follows:

4a We first need to initialize the ghost variables which are local in S(q) but
not in S, namely the variables in F ′.

4b We add a call to q which includes the ghost variables v̄′.
4c After returning from the call, we recover the value of the memory loca-

tions that correspond to ghost variables which are local in S(q) but not
in S, i.e., we put their value back in the heap.

Note that in points 4a and 4c, it is required to relate the field access which
is known to be local within such call (say f) and the actual reference to it
in the current context. This is done by using the access paths as follows. If a
field f is local in S and it is always referenced through li.f1 . . . fn, then when
calling q(〈w̄〉, 〈z̄〉), the initial value of the corresponding ghost variable should
be initialized to wi.f1 . . . fn.f . This is because li refers to the location to which
the i-th argument points when calling q.

Example 15. Fig. 4 shows the transformed program for the declarations of Ex. 14.
For simplicity, when a scope has only one version, we do not introduce new names
for the corresponding procedures. Procedure next is not shown, it is as in Ex. 11.
Procedure hasNext now incorporates a ghost variable vs that tracks the value of
the corresponding state field. Note that r calls m·4 while q calls m·5. For version
4 of m, both f and state are considered local and therefore we have the ghost
variables vs and vf . Version 5 of m is not shown for lack of space, it is equivalent
to version 4 but without any reference to vf since it is not local in that context.
Now, all methods can be proven terminating by using a field-insensitive analysis.

In practice, generating multiple versions for a given scope S might be expensive
to analyze. However, two points should be noted: (1) when no accuracy is gained
by the use of polyvariance, i.e., when the locality information is identical for
all calling contexts, then the transformation behaves as monovariant; (2) when
further accuracy is achieved by the use of polyvariance, a context-sensitive, but
monovariant transformation can be preferred for efficiency reasons by simply
declaring as local only those fields which are local in all versions.
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s(〈x,y,z,w〉,〈〉)←
vs:=y .state,

q(〈y,w,z,vs〉,〈vs〉),
y .state:=vs ,vf :=z.f ,

r(〈x,y,z,vf 〉,〈vf 〉),
z.f :=vf .

q(〈x,y,z,vs〉,〈vs〉)←
m·5(〈x,y,z,vs〉,〈vs〉).

r(〈x,y,z,vf 〉,〈vf 〉)←
w:=null,
r1〈x,y,z,w,vf 〉,〈vf 〉).

r1(〈x,y,z,w,vf 〉,〈vf 〉)←
s0:=z.f,
r2(〈x,y,z,w,s0,vf 〉,〈vf 〉).

r2(〈x,y,z,w,s0,vf 〉,〈vf 〉)←
s0 > 0,s0:=z.f ,
r3(〈x,y,z,w,s0,vf 〉,〈vf 〉).

r2(〈x,y,z,w,s0,vf 〉,〈vf 〉)←
s0 ≤ 0.

r3(〈x,y,z,w,s0,vf 〉,〈vf 〉)←
s0 > 10,w:=x,
r4(〈x,y,z,w,vf 〉,〈vf 〉).

r3(〈x,y,z,w,s0,vf 〉,〈vf 〉)←
s0 ≤ 10,w:=y,
r4(〈x,y,z,w,vf 〉,〈vf 〉).

r4(〈x,y,z,w,vf 〉,〈vf 〉)←
vs:=x.state,
m·4(〈x,z,z,vs,vf 〉,〈vs,vf 〉),
x.state:=vs,
r1(〈x,y,z,w,vf 〉,〈vf 〉).

m·4(〈x,y,z,vs,vf 〉,〈vs,vf 〉)←
while·4(〈x,vs,vf 〉,〈vs,vf 〉),
s0:=vf ,s0:=s0 − 1,vf :=s0,
s0:=vf ,s0:=s0 − 1,vf :=s0.

while·4(〈x,vs,vf 〉,〈vs,vf 〉)←
hasNext(〈x,vs〉,〈s0,vs〉),
m1·4(〈x,s0,vs,vf 〉,〈vs,vf 〉).

m1·4(〈x,s0,vs,vf 〉,〈vs,vf 〉)←
s0 6= null,next(〈x,vs〉,〈s0,vs〉),
while·4(〈x,vs,vf 〉,〈vs,vf 〉).

m1·4(〈x,y,z,s0,vs,vf 〉,〈vs,vf 〉)←
s0 = null.

hasNext(〈this,vs〉,〈r,vs〉)←
s0:=vs,
hasNext1(〈this,s0,vs〉,〈r,vs〉).

hasNext1(〈this,s0,vs〉,〈r,vs〉)←
s0 = null,r:=0.

hasNext1(〈this,s0,vs〉,〈r,vs〉)←
s0 6= null,r:=1.

Fig. 4. Polyvariant Transformation of Running Example (excerpt)

7 Experiments

We have integrated our method in costa [4], a cost and termination analyzer
for Java bytecode, as a pre-process to the existing field-insensitive analysis. It
can be tried out at: http://costa.ls.fi.upm.es. The different approaches can
be selected by setting the option enable field sensitive to: “trackable” for using
the setting of [3]; “mono local” for context-insensitive and monovariant transfor-
mation; and “poly local” for context-sensitive and polyvariant transformation.
In Table 1 we evaluate the precision and performance of the proposed tech-
niques by analyzing three sets of programs. The first set contains loops from
the JOlden suite [6] whose termination can be proven only by tracking reference
fields. They are challenging because they contain reference-intensive kernels and
use enumerators. The next set consists of the loops which access numeric field in
their guards for all classes in the subpackages of “java” of SUN’s J2SE 1.4.2. Al-
most all these loops had been proven terminating using the trackable profile [3].
Hence, our challenge is to keep the (nearly optimal) accuracy and comparable ef-
ficiency as [3]. The last set consists of programs which require a context-sensitive
and polyvariant transformation (source code is available in the website above).

For each benchmark, we provide the size of the code to be analyzed, given
as number of rules #R. Column #Rp contains the number of rules after the
polyvariant transformation which, as can be seen, increases only for the last set
of benchmarks. Column #L is the number of loops to be analyzed and #Lp the
same after the polyvariant transformation. Column Lins shows the number of
loops for which costa has been able to prove termination using a field-insensiti-
ve analysis. Note that, even if all entries correspond to loops which involve fields
in their guards, they can contain inner loops which might not and, hence, can
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Bench. #R #Rp #L #Lp Lins Ltr Lmono Lpoly Tins Otr Omono Opoly

bh 1759 1759 21 21 16 16 16 21 230466 1.54 1.25 1.50

em3d 1015 1015 13 13 1 3 3 13 17129 1.43 1.24 1.55

health 1364 1364 11 11 6 6 6 11 21449 2.23 1.65 2.00

java.util 593 593 26 26 3 24 24 24 17617 1.55 1.62 1.72

java.lang 231 231 14 14 5 14 13 13 2592 1.69 1.38 1.52

java.beans 113 113 3 3 0 3 3 3 3320 1.07 1.09 1.15

java.math 278 278 12 12 3 11 11 11 15761 1.07 1.05 1.12

java.awt 1974 1974 102 102 25 100 100 100 64576 1.25 1.21 1.55

java.io 187 187 4 4 2 4 4 4 2576 2.72 2.16 3.47

run-ex 40 61 2 3 0 0 1 3 300 1.28 1.25 2.24

num-poly 71 151 4 8 0 0 1 8 576 1.27 1.26 3.33

nest-poly 86 125 8 10 1 4 7 10 580 1.61 1.61 3.02

loop-poly 16 29 1 2 0 0 0 2 112 1.25 1.25 2.61

Table 1. Accuracy and Efficiency of four Analysis Settings in costa

be proven terminating using a field-insensitive analysis. This is the case of many
loops for benchmark bh. Columns Ltr , Lmono and Lpoly show the number of loops
for which costa has been able to find a ranking function using, respectively, the
trackable, mono local and poly local profiles as described above. Note that when
using the poly local option, the number of loops to compare to is #Lp since the
polyvariant transformation might increase the number of loops in #L.

As regards accuracy, it can be observed that for the benchmarks in the JOlden
suite, trackable and mono local behave similarly to a field-insensitive analysis.
This is because most of the examples use iterators. Using poly local, we prove
termination of all of them. In this case, it can be observed from column#Rp that
context-sensitivity is required, however, the polyvariant transformation does not
generate more than one version for any example. As regards the J2SE set, the
profile trackable is already very accurate since these loops contain only numeric
fields. Except for one loop in java.lang which involves several numeric fields, our
profiles are as accurate as trackable. All examples in the last set include many
reference fields and, as expected, the trackable does not perform well. Although
mono local improves the accuracy in many loops polyvariance is required to prove
termination. The profile poly local proves termination of all loops in this set.

We have tried to analyze the last set of benchmarks with the two other termi-
nation analyzers of Java bytecode publicly available, Julia [16] and AProVE [12].
Since polyvariance is required, Julia failed to prove termination of all of them.
AProVE could not handle them because they use certain library methods not
supported by the system. We have not been able to analyze the benchmarks
in the Java libraries because the entries are calls to library methods which we
could not specify as inputs to these systems. Something similar happens with
the JOlden examples, the entries correspond to specific loops and we have not
been able to specify them as input.
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The next set of columns evaluate performance. The experiments have been
performed on an Intel Core 2 Duo 1.86GHz with 2GB of RAM. Column Tins

is the total time (in milliseconds) for field-insensitive analysis, and the other
columns show the slowdown introduced by the corresponding field-sensitive anal-
ysis w.r.t. Tins . The overhead introduced by trackable and mono local is compa-
rable and, in most cases, is less than two. The overhead of poly local is larger
for the examples which require multiple versions and it increases with the size
of the transformed program in #Rp. We argue that our results are promising
since the overhead introduced is reasonable.

8 Conclusions and Related Work

Field sensitiveness is considered currently one of the main challenges in static
analyses of object-oriented languages. We have presented a novel practical ap-
proach to field-sensitive analysis which handles all object fields (numeric and
references) in a uniform way. The basic idea is to partition the program into
fragments and convert object fields into local variables at each fragment, when-
ever such conversion is sound. The transformation can be guided by a context-
sensitive analysis able to determine that an object field can be safely replaced
by a local variable only for a specific context. This, when combined with a
polyvariant transformation, achieves a very good balance between accuracy and
efficiency.

Our work continues and improves over the stream of work on termination
analysis of object-oriented bytecode programs [3,12,2,15,14]. The heuristic of
treating fields as local variables in order to perform field-sensitive analysis by
means of field-insensitive analysis was proposed by [3]. However, there are es-
sential differences between both approaches. The most important one is that [3]
handles only numeric fields and it is not effective to handle reference fields. A
main problem is that [3] replicates numeric fields with equivalent local variables,
instead of replacing them as we have to do to handle references as well, e.g.,
an instruction like y.ref :=x is followed (i.e., replicated) by vref :=x. Replicating
instructions, when applied to reference fields, makes y .ref and vref alias, and
therefore the path-length relations of vref will be affected by those of y .ref . In
particular, further updates to y .ref will force losing useful path-length informa-
tion about vref , since the abstract field update (see [15]) loses valuable path-
length information on anything that shares with y. Handling reference fields is
essential in object-oriented programs, as witnessed in our examples and experi-
mental results.

Techniques which rely on separation logic in order to track the depth (i.e.,
the path-length) of data-structures [5] would have the same limitation as path-
length based techniques, if they are applied in a field-insensitive manner. This is
because the depth of a variable x does not necessarily decrease when the depth
of one of its field decreases (see Sec. 2). However, by applying these techniques
on our transformed programs, we expect them to infer the required information
without any modification to their analyses.
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