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Abstract

Static analysis which takes into account the values of data stored in the heap
is considered complex and computationally intractable in practice. Thus, most
static analyzers do not keep track of object fields nor of array contents, i.e.,
they are heap-insensitive. In this article, we propose locality conditions for
soundly tracking heap-allocated data in Java (bytecode) programs, by means
of ghost non-heap allocated variables. This way, heap-insensitive analysis over
the transformed program can infer information on the original heap-allocated
data without sacrificing efficiency. If the locality conditions cannot be proven
unconditionally, we seek to generate aliasing preconditions which, when they
hold in the initial state, guarantee the termination of the program. Experimen-
tal results show that we greatly improve the accuracy w.r.t. a heap-insensitive
analysis while the overhead introduced is reasonable.

Keywords: Static Analysis, Heap-Sensitive Analysis, Termination, Java
Bytecode, Program Transformation

1. Introduction

It is well known that shared mutable data structures, such as those stored in
the heap, are the bane of formal reasoning and static analysis (see e.g. [23, 11]).
This problem is exacerbated in object-oriented programs, since most data reside
in objects and arrays stored in the heap. Analyses which keep track (resp. do
not keep track) of heap-allocated data are referred to as heap-sensitive (resp.
heap-insensitive). In most cases, neither of the two extremes of using a fully
heap-insensitive analysis or a fully heap-sensitive analysis is acceptable. The
former produces too imprecise results and the latter is often computationally
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intractable. There has been significant interest in developing techniques that
result in a good balance between the accuracy of analysis and its associated
computational cost. A number of heuristics exist which differ in how the values
of heap-allocated data are modeled. A well-known heuristic is field-based analy-
sis, in which only one variable is used to model all instances of a field, regardless
of the number of objects for the same class which may exist in the heap. This
approach is efficient, but loses precision quickly.

The approach we propose in this article is based on the observation that, by
analyzing program fragments (or scopes), rather than the application as a whole,
it is often possible to keep track of the values of heap-allocated data in a similar
way as for non heap-allocated variables. Such fragments can be built starting
from methods, loops, or even blocks of contiguous sentences. Our final goal is
to be able to instrument programs such that accesses to heap-allocated data are
replaced with (or replicated by) equivalent accesses to, non-heap allocated, ghost
variables whose values represent the values of the corresponding heap-allocated
data. The instrumented program can then be input to any heap-insensitive
static analysis, which can now obtain heap-sensitive information, since the ghost
variables expose the heap-allocated values.

The kind of properties that can benefit from our approach are those which
require a local or compositional reasoning, i.e., they require the inference of
the property for certain fragments, rather than a global inference for the whole
program execution. Termination, the target application of our article, is a
property that requires such kind of local reasoning, where the scopes of interest
are the loops. Basically, in order to prove termination, the analysis has to keep
track of how the size of the data involved in loop guards changes when the
loop goes through its iterations. This information is used for determining (the
existence of) a ranking function [25] for the loop, which is a function which
strictly decreases on a well-founded domain at each iteration of the loop and
which ensures termination of the corresponding loop.

Obviously, not all heap-allocated data are transformable, i.e., their behaviour
reproducible using ghost variables. In the most general characterization, the
replacement is possible when two sufficient conditions hold within the scope: (a)
the memory location where the heap-allocated data is stored does not change,
i.e., the reference to such data remains constant, and (b) all accesses (if any) to
such memory location are done through the same reference (and not through
aliases). This characterization captures the situations in which heap-allocated
data behave locally (i.e., like non heap-allocated variables) in the given scopes.

1.1. Summary of Contributions

The overall contribution is a practical method to perform heap-sensitive
termination analysis by (a) first performing a pre-analysis which allows us to
determine when heap-allocated data behave locally, (i.e., their behaviour is re-
producible using ghost variables) and, otherwise, infer the conditions under
which locality holds and, (b) then instrumenting the program with ghost vari-
ables whose contents represent the contents of the corresponding heap-allocated
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data. Heap-insensitive termination analysis on the transformed program al-
lows us to reason on data allocated in the heap through the ghost variables.
Technically, our main contributions can be summarized as follows:

1. We first develop a semantic-based reference constancy analysis (instead of
just performing syntactic checks) which infers the (constant) access paths
to both fields and array elements in a uniform way.

2. We then present a general notion of locality for heap-allocated data which
can be checked using the results obtained by the reference constancy anal-
ysis, and which determines if heap-allocated data behave as local variables.

3. Sometimes, heap-allocated data behave locally only under certain aliasing
conditions. We introduce the notion of locality partition which, by as-
suming such aliasing conditions, guarantees the locality of the considered
heap-allocated data.

4. Based on the notion of locality partition, we introduce a novel transforma-
tion which replaces the accesses to local heap-allocated data by non-heap
allocated ghost variables. An interesting aspect of our conditional heap-
sensitive analysis that we will show in the article is that we can improve
the accuracy of the unconditional heap-insensitive analysis even in cases
for which programs terminate unconditionally.

5. We then propose an approach for automatically inferring the aliasing pre-
conditions that, when they hold in the initial state, guarantee the termi-
nation of the program under consideration.

6. We implement our approach in the COSTA system [8], a cost and termina-
tion analyzer for Java bytecode, and evaluate it on the Apache Commons
Libraries [26].

1.2. Organization of the Article

This article is organized as follows. The next section briefly describes the
language we consider, which is an intermediate (rule-based) representation of
Java bytecode [22], and its semantics. Section 3 is devoted to presenting the
reference constancy analysis for programs written in this language.

Section 4 introduces the heap-sensitive analysis in three main steps. We first
define a simple locality condition which relies on the information inferred by the
reference constancy analysis. Then, we discuss that such a condition might only
hold under some aliasing (or not aliasing) conditions among the heap accesses.
This leads to the notion of locality partition explained above. We can finally
present a transformation which actually replaces the heap accesses which meet
the locality condition by ghost variables for the given locality partition.

In Section 4, we do not specify how the termination (aliasing) preconditions
can be generated. This is considered in Section 5 where we propose an approach
to infer the conditions based on two notions of termination: local termination,
which guarantees that the loops defined in a given scope S are terminating,
ignoring the termination behavior of loops defined in scopes that are called
from S; and global termination, which guarantees that the loops of S as well as
those of scopes that are transitively called from S are terminating. Basically,
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preconditions are first inferred at a local termination level, and then they are
combined to obtain the global preconditions.

Section 6 summarizes our experimental results performed on the Apache
Commons Libraries [26]. We have analyzed all loops that contain guards with
heap-accesses. Precision is greatly improved by the use of heap-sentitive analy-
sis: namely using heap-insensitive analysis we can prove termination of 11.2%
of loops, using unconditional heap-sensitive analysis this percentage increases
to 75.9%, and using conditional heap-sensitive analysis we further increase it
to 88%. The slowdown introduced by the unconditional heap-sensitive (w.r.t.
heap-insensitive) is in most cases less than 2, while the overhead of the condi-
tional (w.r.t. the unconditional heap-sensitive) is in most cases less than 1.25.
Altogether, we argue that our experiments show that our approach pays off in
practice.

Finally, Section 8 relates our approach to previous work and Section 9 con-
cludes and points out several directions for future work.

2. A Simple Object-Oriented Imperative Bytecode Language

To formalize our analysis, we consider a simple rule-based imperative lan-
guage (in the style of any of the languages in [6, 31, 21]). It has been shown
that Java bytecode (and hence Java) can be automatically compiled into this
intermediate language [6, 8]. When compared to analyzing the original byte-
code, the key features which facilitate the formalization of the analysis are: (1)
recursion is the only iterative mechanism, (2) guards are the only form of con-
ditional, (3) there is no operand stack, (4) objects can be regarded as records,
and the behavior induced by dynamic dispatch in the original bytecode program
is compiled into dispatch rules guarded by a type check, and (5) rules may have
multiple output parameters which are useful for our transformation later.

2.1. Language Syntax

A rule-based program P consists of a set of procedures and a set of classes.
The set of class names C defined in P is denoted by classes(P ). We do not
give an explicit syntax for defining classes, when needed, we simply use Java’s
syntax. A procedure p with k input arguments x̄ = 〈x1, . . . , xk〉 and m output
arguments ȳ = 〈y1, . . . , ym〉 is defined by one or more guarded rules which adhere
to this grammar:

rule ::= p(x̄, ȳ) ← g, body.
g ::= true | exp1 op exp2 | type(x,C)

body ::= ε | b, body
b ::= x:=exp | x :=new C | x :=y .f | x .f :=y | x :=newarray(D , y) |

x[y]:=z | z:=x[y] | x:=arraylength(y) | q(x̄, ȳ)
exp ::= x | null | n | x aop y
aop ::= + | − | / | ∗
op ::= > | < | ≤ | ≥ | = | 6=
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where p(x̄, ȳ) is the head of the rule; g its guard, which specifies conditions for
the rule to be applicable; body the body of the rule; n an integer; x, y and
z variables; f a field name and q(x̄, ȳ) a procedure call by value. We assume
that rules that belong to the same procedure have the same input and output
parameter names.

The language supports class definition and includes instructions for object
and array creation and manipulation. A class contains a finite set of typed field
names, where a type can be (1) an integer; (2) a class C ∈ classes(P ); or (3) an
array whose elements are of type integer or classes(P ).

We assume that the same field name, if used in different classes, has the
same type. This can be done by automatically encoding the type into the field
name. The set of all field names defined in P is denoted by fields(P ). The
instruction new C creates an object of type C and returns a reference to it,
newarray(D, y) creates an array of y elements of type D ∈ {int} ∪ classes(P )
and arraylength(y) returns the length of the array y. For simplicity, we support
only unidimensional arrays.

Classes, in our language, are in fact closer to records in C than classes in Java,
as they encapsulate only fields and not methods, and do not use inheritance
or interfaces as in Java. Such features are compiled to our language as we
explain next. The translation from (Java) bytecode to the rule-based form is
performed in two steps that are described in detail in [8]. First, a control flow
graph is built for each method, where the virtual invocations are resolved using
points-to analysis (this is why in our language classes contain only fields).1

Second, a procedure is defined for each basic block in the graph and the operand
stack is flattened by considering its elements as additional local variables. For
formalizing the analysis, the language does not include features of Java, such
as exceptions, static fields, access control and primitive types besides integers,
arrays and references. These features do not pose any technical difficulty to our
analysis, but some of them (e.g., exceptions) require a more precise modeling of
data. Our implementation deals with full sequential Java bytecode.

2.2. Language Semantics

First, we assume that programs have been verified for well-typedness. By
well-typedness we mean that any program variable at a given program point
can hold (in any possible execution) either a reference or an integer, but not
both. We refer to such types as static types. The following four types are
considered: int for integers, ref for object references, aint for references to
arrays of integers and aref for references to arrays of objects. Given a variable
x, we let stype(x) denote its static type. Due to well-typeness, for the case of
x[y]:=z and z:=x[y], the variable x can be (in any execution) either a reference
to an array of integers or to an array of references (because z has always the
same static type). For such case, we assume that stype(x) returns aint or
aref respectively. Note that, for simplicity, we assume that variable x implicitly

1Note the loss of precision in the points-to analysis.
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contains information on the program point at which it appears so that its stype
can uniquely identify this variable.

The execution of rule-based programs mimics standard bytecode [22]. The
rules in Figure 1 define an operational semantics for the language (see [8] for
more details). An execution state takes the form ar ;h, where ar is a stack of
activation records, and h is a global heap. An activation record has the form
〈p, bc, tv〉, where p is a procedure name, bc is a sequence of instructions, and tv
is a variable mapping. Given a variable x, tv(x) refers to the value of x, and
tv [x 7→v] updates tv by making tv(x) = v while tv remains the same for all other
variables. A heap h is a partial map from an infinite set of memory locations (or
reference) to objects. We use h(r) to denote the object referred to by r in h. We
use h[r 7→ o] to indicate the result of updating the heap h by making h(r) = o
while h stays the same for all locations different from r. For any location r and
heap h, r ∈ dom(h) iff there is an object associated to r in h. Given an object
o, o.f refers to the value of the field f in o, and o[f 7→v] sets the value of o.f to
v. We use h[o.f 7→v] as a shortcut for h[r 7→ (o[f 7→ v])] with o = h(r).

In rule (1), eval(exp, tv) returns the evaluation of the arithmetic or boolean
expression exp for the values of the corresponding variables from tv in the stan-
dard way; for reference variables, it returns the reference. We assume that
well-typing forbids pointer arithmetics. Rules (2), (3) and (4) deal with objects
as expected. Procedure newobject(C) creates a new object of class C by ini-
tializing its fields to either 0 or null, depending on their types. Rules (5), (6),
(7) and (8) account for arrays. For simplicity, an array of length v is modeled
as an object o with a special (read-only) field length initialized to v, and fields
1, . . . , v which correspond to the array elements. The call newarray(D , v) cre-
ates an array of v elements initialized to 0 or null. Note that Rule (7) prevents
“simulating” multi-dimensional arrays. Rule (9) (resp., (10)) corresponds to
calling (resp., returning from) a procedure. The notation p[ȳ′, ȳ] records the
association between the formal and actual return variables. newenv creates a
new mapping of local variables for the method, where each variable is initialized
to either 0 or null.

An execution for a program P starts from an initial configuration of the form
〈start, p(x̄, ȳ), tv〉;h, and ends in a final configuration 〈start, ε, tv ′〉;h′, where:

1. start is an auxiliary name to indicate an initial activation record;

2. p(x̄, ȳ) is a call to the procedure from which the execution starts;

3. h is an initial heap; and

4. tv is a variable mapping such that dom(tv) = {x̄} ∪ {ȳ}, and all variables
are initialized to an integer value, null or a reference to an object in h.

Executions can be regarded as traces of the form C0 ; C1 ; · · · ; Cf
(abbreviated C0 ;∗ Cf ), where Cf is a final configuration. Non-terminating
executions have infinite traces.

6



(1)
b ≡ x:=exp, v = eval(exp, tv)

〈p, b·bc, tv〉·ar ;h; 〈p, bc, tv [x 7→ v]〉·ar ;h

(2)
b ≡ x:=new C, o = newobject(C), r is a new location not in dom(h)

〈p, b·bc, tv〉·ar ;h; 〈p, bc, tv [x 7→ r]〉·ar ;h[r 7→ o]

(3)
b ≡ x:=y.f, tv(y) 6= null, o = h(tv(y))
〈p, b·bc, tv〉·ar ;h; 〈p, bc, tv [x 7→ o.f ]〉·ar ;h

(4)
b ≡ x.f :=y, tv(x) 6= null, o = h(tv(x))

〈p, b·bc, tv〉·ar ;h; 〈p, bc, tv〉·ar ;h[o.f 7→ tv(y)]

(5)
b ≡ x:=newarray(D, y), v = tv(y), v ≥ 0,

o = newarray(D, v), r is a new location not in dom(h)
〈p, b·bc, tv〉·ar ;h; 〈p, bc, tv [x 7→ r]〉·ar ;h[r 7→ o]

(6)
b ≡ x:=arraylength(y), tv(y) 6= null, o = h(tv(y))
〈p, b·bc, tv〉·ar ;h; 〈p, bc, tv [x 7→ o.length]〉·ar ;h

(7)
b ≡ x[y]:=z, tv(x) 6= null, o = h(tv(x)), v = tv(y),

1 ≤ v ≤ o.length, tv(z) is not an array
〈p, b·bc, tv〉·ar ;h; 〈p, bc, tv〉·ar ;h[o.v 7→ tv(z)]

(8)
b ≡ x:=y[z], tv(y) 6= null, o = h(tv(y)), v = tv(z),

1 ≤ v ≤ o.length
〈p, b·bc, tv〉·ar ;h; 〈p, bc, tv [x 7→ o.v]〉·ar ;h

(9)
b ≡ q(x̄, ȳ), there is a rule q(x̄′, ȳ′):=g, b1, · · · , bk ∈ P,

tv ′′ = newenv(q), tv ′ = tv ′′[x′i 7→ tv(xi)], eval(g, tv ′) = true
〈p, b·bc, tv〉·ar ;h; 〈q, b1 · · · bk, tv ′〉·〈p[ȳ′, ȳ], bc, tv〉·ar ;h

(10) 〈q, ε, tv ′〉·〈p[ȳ′, ȳ], bc, tv〉·ar ;h; 〈p, bc, tv [ȳ 7→ tv ′(ȳ′)]〉·ar ;h

Figure 1: Operational semantics of bytecode programs in rule-based form

Example 1. Our running example is shown in Figure 2. Class ListIter im-
plements the Iterator interface. In object-oriented programming, the iterator
pattern (also enumerator) is a design pattern in which the elements of a col-
lection are traversed systematically using a cursor. The cursor points to the
current element to be visited and there is a method, called next, which returns
the current element and advances the cursor to the next element, if any. In
order to simplify the example, the method next in Figure 2 returns (the new
value of) the cursor itself and not the element stored in the node. The impor-
tant point, though, is that the state field is updated at each call to next. Class
List implements a linked list in the standard way. Finally, class UseIterator
contains the method of interest m. The interesting features of this method are:
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class ListIter implements
Iterator〈List〉 {

List state;

public ListIter(List l) {
state = l;
}
public List next() {

List obj = this.state;
this.state = obj.next;
return obj;
}
public boolean hasNext() {

return (this.state != null);
}
public void remove() {

throw new Unsupported-
OperationException();

}
}

class List {
int data;
List next;

List(int x, List y) {
data = x; next = y;

}
}

class UseIterator {
public static void m(int[ ] a,int[ ] b, ListIter y) {

while (y.hasNext()){
List o = y.next();
int i= o.data; int j = i;
while(a[i] > 0) {

a[i]--;
b[j]++;

}
}
}
}

Figure 2: Running example. Method m contains nested loops with iterator and arrays

the combined use of fields and arrays, that it contains two nested loops which
must be analyzed compositionally and that its termination can be only proven
conditionally. For now, we focus on the inner while loop of method m. Its
intermediate representation is made up of these three rules:

while(〈a, b, i, j〉, 〈〉)←
s0:=a,
s1:=i,
s0:=s0[s1],
whilec(〈a, b, i, j, s0〉, 〈〉).

whilec(〈a, b, i, j, s0〉, 〈〉)← s0 ≤ 0.

whilec(〈a, b, i, j, s0〉, 〈〉)← s0 > 0,
s1:=a, s2:=i, s3:=a, s4:=i,
s3:=s3[s4], s3:=s3 − 1, s1[s2]:=s3,
s1:=b, s2:=j, s3:=b, s4:=j,
s3:=s3[s4], s3:=s3 + 1, s1[s2]:=s3,
while(〈a, b, i, j〉, 〈〉).

The entry rule while receives as input parameters two references to the arrays
a and b and two integer values i and j. Guards that are true are omitted in
the example. An important point to note is that the accesses to the array are
performed by pushing the values to the stack, which in the intermediate repre-
sentation are just local variables. For instance, the first three instructions in the
body of procedure while push the value of a[i] in the stack position s0. Therefore,
the development of syntactic techniques (rather than semantics-based) to reason
on these programs would be quite complex. Note that the termination of the
method m can only be ensured if the array references a and b are different, i.e.,
point to different memory locations.
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S2


if (k > 0) then x = z;

else x = y;
x.f = 10;

S1

{
for(; i < x.f; i++)

b[i] = x.b[i]; A©

S2


while ( x != null ) {

S1

{
for(; x.c < n; x.c++)

value[x.c]++;
x = x.next;

} B©

S1


while (x.size < 10) {

x.size++;
x=x.next;

} C©

S1


while (x[0].r.size < 10) {

x[0].r.size++;
y.r = z;

} D©

Figure 3: Small examples to illustrate the notion of constant access path

3. Reference Constancy Analysis

In this section, we develop a reference constancy analysis which allows us to
obtain the access paths to the fields, arrays and array elements which are con-
stant in the considered scopes. The idea behind this analysis is similar in spirit
to that of the classical numeric constant propagation analysis [16]. However,
in addition to numerical constants, the values computed by our analysis can
include symbolic expressions that refer to locations in (the initial) heap. Such
expressions encode as well the way that the corresponding memory locations
are reached (e.g., the dereferenced fields).

Example 2. Consider the examples in Figure 3 . S1 and S2 are used to delimit
scopes. In A©, the reference x remains constant within the scope of loop S1 since
its value does not change. However, if we consider the whole code fragment S2,
x is no longer constant, since x can take two different values before the loop.
In B©, all occurrences of x are constant within the scope S1 of the inner loop.
However, x takes different values in different iterations of the outer loop, and
thus x is not constant in the whole scope S2. In C©, x is not constant because it
is updated at each iteration of the loop. In D©, it cannot be ensured that x[0].r is
constant, since if x[0] and y are aliases, updating y.r changes x[0].r.

3.1. The Set of Access Paths

We start by defining the set of (symbolic) abstract values that our analysis
assigns to each variable, at each program point. We refer to these values as
access paths since they provide a symbolic representation of the access path
to the memory locations. They are defined in terms of the (symbolic) input
parameters of the initial call. We denote these parameters by L = {l1, . . . , ln},
where li represents the value of the i-th parameter. An access path will be
denoted by A (possibly subscribed or primed), and it can be one of the following
values:

1. n ∈ Z, which represents the corresponding integer;

2. Anull, which represents the value null;
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3. li·F1· · ·Fn or li[A′]·F1· · ·Fn , where each Fi is of the form fi or fi[A′′]
and fi ∈ fields(P ). Note that n can also be 0, in which case we do not
access any field. Moreover, A′ and A′′ are different from Anull.

An access path A might refer to an integer or a value or a reference to an
object or to an array. Observe also that each li inherits the static type of its
corresponding parameter. In addition to the access paths defined by the above
rules, we use a special one, denoted by Aany, that represents any value. Note
that Aany cannot appear as part of any other access path.

Example 3. Intuitively, our analysis will assign to each variable (at each pro-
gram point) an access path which describes its possible values whenever the
execution reaches that point. Suppose that a variable x, at some program point,
is assigned the access path A. Let us intuitively explain the meanings for some
possible values of A: (1) if A = 5, then the value of x is equal to 5; (2) if
A = l2, then the value of x is equal to the value of the second initial parameter;
(3) if A = l1·f ·g, assuming that the first parameter points to an object o, then
x has the value of o.f.g when evaluated in the initial state; (4) if A = l2[l4],
assuming that the second initial parameter points to an array a and that the
fourth parameter is an integer n, then the value of x is like that of a[n] (again,
when evaluated in the initial state); and (5) if A = Aany, then the value of x
can be any reference or integer value, depending on the type of x.

The set of all access paths, w.r.t. a given set L of initial parameters, is denoted
by AP(L). Given an access path A, we denote by A[l1/A1, . . . , ln/An] the
access path that results from simultaneously replacing each occurrence of li by
Ai. If the result includes Aany, i.e., it is an invalid access path, then we assume
that A[l1/A1, . . . , ln/An] is actually Aany. This replacement operation extends
for any entity that involves access paths. The set of access paths AP(L) is
partially ordered by va such that for any A ∈ AP(L) we have A va A′ if and
only if A = A′ or A′ = Aany. We let A1 ta A2 be A1 if A1 = A2; otherwise
Aany.

3.2. The Analysis

In order to assign access paths to variables at program point level, we
first need to define such program points. For this, we assume that the pro-
gram’s rules are uniquely numbered starting from 1. The k-th program rule
p(x̄, ȳ) ←g, bk1 , . . . , bkt has t + 1 program points. The first one, k:1, after the
execution of the guard g and before the execution of b1, then k:2 between the
execution of b1 and b2, until k:t+1 after the execution of bt. For an initial config-
uration C0 = 〈start, p(x̄, ȳ), tv〉;h, we assume that the call p(x̄, ȳ) corresponds
to program point 0:0. The set of all program points of a program P , including
0:0, is denoted by pps(P ).

The analysis receives as input a program P and a procedure name p which
we refer to as the entry. We assume that p has n arguments, and their symbolic
values, as above, are denoted by L = {l1, . . . , ln}. The analysis assigns to each
program point k:j ∈ pps(P ) an abstract state, from which it is possible to obtain
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the access path of each variable, at any program point. Given a set of (typed)
variables V, defined at a given program point, an abstract state over V and L
has the form 〈φ, θ〉, where φ : V 7→ AP(L) maps variables to access paths; and
θ ⊆ fields(P ) ∪ {aint, aref} is a set of field names and array-types which are
guaranteed to be constant, i.e., they are not modified in any execution that
reaches the corresponding program point. Our main interest is in inferring φ,
the set θ is auxiliary to soundly construct φ during the analysis.

We let S(V,L) be the set of all abstract states, w.r.t. some V and L. We
say 〈φ1, θ1〉 vs 〈φ2, θ2〉 if θ2 ⊆ θ1, and φ1(x) va φ2(x) for any x ∈ V. We let
〈φ1, θ1〉 ts 〈φ2, θ2〉 = 〈φ, θ1 ∩ θ2〉 where φ(x) = φ1(x) ta φ2(x) for any x ∈ V.
We point out that θ contains those field names and array-types which remain
constant during the analysis. Hence, each time a field or an array component
is modified, the corresponding signature is removed from θ (see rules (2) and
(9) in Figure 4). This is why θ2 ⊆ θ1 is required when defining vs. Similarly,
when doing the operation ts between two abstract states, the resulting abstract
state must keep only those field signatures and array-types which are constant
in both of them. Thus the new abstract state will contain the intersection of
the corresponding θ’s.

We denote by A(V,L) the complete lattice 〈S(V,L),>s,⊥s,ts,vs〉, where
(1) the top element >s corresponds to 〈φ, ∅〉 in which φ(x) = Aany for any x ∈ V;
and (2) the bottom element ⊥s is a symbolic value that represents an empty
abstract state. Next we lift A(V,L) in order to represent a set of abstract states,
one for each k:j ∈ pps(P ). We represent such states as sets of elements of the
form k:j 7→ 〈φ, θ〉 (or k:j 7→ ⊥s) where 〈φ, θ〉 ∈ S(Vk:j ,L). Here Vk:j is the set of
(typed) variables that are available at program point k:j. Such set must include
an abstract state for each k:j ∈ pps(P ). The set of all such states is denoted by
S̄P . We use ĀP to denote the complete lattice 〈S̄P ,>p,⊥p,tp,vp〉 where >p,
⊥p, tp, and vp are defined by lifting the corresponding ones of A(Vk:j ,L).

The analysis is based on a transfer function τ , depicted in Figure 4, that
defines the effect of executing each (simple) instruction on a given abstract state
〈φ, θ〉. Let us explain the different cases of the transfer function:

(1) When a variable x is assigned the value of y·f , there are two cases. The
first one corresponds to the case in which φ(y) = Anull, i.e., a possible null
pointer exception. In this case the transfer function returns ⊥s, i.e., the
empty abstract state. Otherwise, the transfer function updates the access
path of x accordingly: if y is not Aany, and field f has not been updated
so far, then the resulting access path is the concatenation of that of y with
the symbol f ; otherwise Aany.

(2) When a field f is assigned a value, then if φ(x) = Anull we proceed as in
(1). Otherwise f is eliminated from θ, i.e., it is marked as a field that
has been updated and it is not constant. Note that in any subsequent
execution step, an access y·f (of case (1)) will result in Aany.

(3) This case simply updates the access path of x to the number n.

11



Instruction b Transfer function τ(b, 〈φ, θ〉)
(1) x:=y.f ⊥s if φ(y) = Anull, otherwise 〈φ[x 7→ A], θ〉
(2) x.f :=y ⊥s if φ(x) = Anull, otherwise 〈φ, θ\{f}〉
(3) x:=n 〈φ[x 7→ n], θ〉
(4) x:=null 〈φ[x 7→ Anull], θ〉
(5) x:=y 〈φ[x 7→ φ(y)], θ〉
(6) x:=y aop z 〈φ[x 7→ A], θ〉
(7) x:=newarray(D, y) 〈φ[x 7→ Aany], θ〉
(8) x:=y[z] ⊥s if φ(y) = Anull, otherwise 〈φ[x 7→ A], θ〉
(9) x[y]:=z ⊥s if φ(x) = Anull, otherwise 〈φ, θ\{stype(x)}〉

(10) x:=new C 〈φ[x 7→ Aany], θ〉
(11) x:=arraylength(y) 〈φ[x 7→ Aany], θ〉
(12) otherwise 〈φ, θ〉

where we have the following conditions in rules:

(1) If f ∈ θ ∧ φ(y) 6= Aany then A = φ(y)·f ; otherwise A = Aany.

(6) If φ(y) and φ(z) are numbers, then A = φ(y) aop φ(z); otherwise A =
Aany.

(8) If stype(y) ∈ θ ∧ φ(y) 6=Aany ∧ φ(z) 6=Aany then A = φ(y)[φ(z)]; otherwise
A = Aany.

Figure 4: Transfer function for reference constancy analysis

(4) Similarly to the above case, it updates the access path of x to Anull.

(5) This case updates the access path of x with that of y.

(6) If the access path of y and z are numbers, then the access path of x is up-
dated to be the result of applying the corresponding arithmetic operator;
otherwise it is updated to Aany to indicate that it can be any number.

(7) In this case, when creating a new array, the access path of x is updated
to Aany to indicate that it can be any reference value.

(8) If φ(y) = Anull, i.e., a null pointer exception occurs, the transfer function
returns the empty abstract state ⊥s. Otherwise if the access paths of y
and z are not Aany, and it is guaranteed that the accessed array has not
been modified (its static type is still in θ), then the access path of x is
computed accordingly; otherwise it is Aany.

(9) It eliminates the static type of array x from θ whenever φ(x) 6= Anull. It
is analogue to case (2).

(10) This case is similar to case (7). The access path of x is updated to Aany,
to indicate that its value might be any reference value.

12



(11) Simply maps x to Aany since the length of the array can be any number.

The remaining instructions do not alter constancy information.

Example 4. Let us consider an abstract state 〈φ0, θ0〉 such that φ0 = {a 7→
l1, i 7→ l2} and θ0 = {f, aint}. Assume the fragment code z:=a[i], x.f :=z,
w:=x.f . Then, by rule (8) in Figure 4, τ(z:=a[i], 〈φ0, θ0〉) returns the new
abstract state 〈φ1, θ0〉, where φ1 = φ0 ∪ {z 7→ l1[l2]}. Then, the application
of rule (2) on the instruction x.f :=z removes the field f from θ0 and returns
〈φ1, {aint}〉. Finally, with this last abstract state and rule (1) applied on the
instruction w:=x.f we compute 〈φ1 ∪ {w 7→ Aany}, {aint}〉, what means that at
this point only the array-type remains constant.

The analysis starts from an abstract state I#0 ∈ ĀP that assigns ⊥s to
each program point k:j ∈ pps(P ), except for 0:0 which is assigned the abstract
state 〈φ,fields(P ) ∪ {aint, aref}〉 where φ maps each xi (resp. yi) of the initial
call p(x̄, ȳ) to li (resp. Anull or 0 depending on its type). Then, it iteratively

computes I#i+1 = I#i tp F
#
P (I#i ) until it reaches a state in which I#i+1 = I#i .

The operator F#
P : S̄P 7→ S̄P is defined as F#

P (X) = F#
1 (X)∪F#

2 (X)∪F#
3 (X)

where each F#
i is as follows:

F#
1 (X) =

k:j+1 7→ 〈φ′, θ′〉

∣∣∣∣∣∣
bkj ∈ P which is not a call
k:j 7→ 〈φ, θ〉 ∈ X
〈φ′, θ′〉 = τ(bkj , 〈φ, θ〉)


F#
2 (X) =

k′:1 7→ 〈φ′, θ′〉
∣∣∣∣∣∣∣∣
bkj ≡ q(w̄, z̄) ∈ P, q is defined by rule

k′ ≡ q(x̄, ȳ)←g, bk′1 , . . . , bk
′

t ∈ P,
k:j 7→ 〈φ, θ〉 ∈ X
φ′′ = init(k′), φ′ = φ′′[xi 7→ φ(wi)], θ

′ = θ


F#
3 (X) =

k′:j+1 7→ 〈φ′, θ′〉

∣∣∣∣∣∣
p(x̄, ȳ)←g, bk1 , . . . , bkt ∈ P, bk

′

j ≡ p(w̄, z̄) ∈ P
k:t+1 7→ 〈φ, θ〉 ∈ X, k′:j 7→ 〈φ′′, θ′′〉 ∈ X
φ′ = φ[zi 7→ φ′′(yi)], θ

′ = θ′′


Let us explain each F#

i :

• F#
1 handles cases in which the instruction bkj is a simple instruction. It

uses the current abstract state for program point k:j and the transfer
function τ in order propagate the information to program point k:j+1.

• F#
2 handles cases in which k:j is a call q(w̄, z̄) to another procedure. In

this case we propagate the abstract state of program point k:j to the entry
program point k′:1 for each rule k′ that defines q. This is done by first
creating an initial mapping φ′′ that maps each variable of rule k′ to either 0
or Anull, depending on its type at that program point, and then modifying
the access path of each xi to be as that of the i-th actual parameter.

• In a similar way, F#
3 handles cases in which we propagate the return values

to the calling context.
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while(〈a, b, i, j〉, 〈〉)←
s0:=a,
s1:=i,

1©s0:=s0[s1],
whilec(〈a, b, i, j, s0〉, 〈〉).

whilec(〈a, b, i, j, s0〉, 〈〉)← s0 ≤ 0.
whilec(〈a, b, i, j, s0〉, 〈〉)← s0 > 0,

s1:=a, s2:=i, s3:=a, s4:=i,
2©s3:=s3[s4],
s3:=s3 − 1,
s1[s2]:=s3,
s1:=b, s2:=j, s3:=b, s4:=j,

3©s3:=s3[s4],
s3:=s3 + 1,
s1[s2]:=s3,
while(〈a, b, i, j〉, 〈〉).

{a7→l1, b 7→l2, i 7→l3, j 7→l4}
{s0 7→l1, a 7→l1, b 7→l2, i 7→l3, j 7→l4}
{s1 7→l3, s0 7→l1, a 7→l1, b 7→l2, i 7→l3, j 7→l4}
{s1 7→l3, s0 7→Aany, a 7→l1, b 7→l2, i 7→l3, j 7→l4}
{s1 7→l3, s0 7→Aany, a 7→l1, b 7→l2, i 7→l3, j 7→l4}
{s0 7→Aany, a 7→l1, b 7→l2, i 7→l3, j 7→l4}
{s0 7→Aany, a 7→l1, b 7→l2, i 7→l3, j 7→l4} = X

{s4 7→l3, s3 7→l1, s2 7→l3, s1 7→l1} ∪X
{s4 7→l3, s3 7→Aany, s2 7→l3, s1 7→l1} ∪X
{s4 7→l3, s3 7→Aany, s2 7→l3, s1 7→l1} ∪X
{s4 7→l3, s3 7→Aany, s2 7→l3, s1 7→l1} ∪X
{s4 7→l4, s3 7→l2, s2 7→l4, s1 7→l2} ∪X
{s4 7→l4, s3 7→Aany, s2 7→l4, s1 7→l2} ∪X
{s4 7→l4, s3 7→Aany, s2 7→l4, s1 7→l2} ∪X
{s4 7→l4, s3 7→Aany, s2 7→l4, s1 7→l2} ∪X
{s4 7→l4, s3 7→Aany, s2 7→l4, s1 7→l2} ∪X

Figure 5: IR of the running example (left). Program point constancy information (right)

Example 5. Figure 5 shows to the left the intermediate representation of the
while loop of Example. 1 and to the right the abstract states, computed by the
analysis, for some selected program points. Each abstract state corresponds to
the result after analyzing the instructions in the corresponding line in the left-
hand side. We use l1, l2, l3, l4 to refer to, respectively, the initial values of a,
b, i and j. Observe that at program point 1©, i.e., before executing s0:=s0[s1],
the access paths assigned to s0 and s1 are respectively l1 and l3. This means
that the corresponding array access will always refer to the memory location
l1[l3]. We will see that this piece of information is crucial to determine if the
corresponding heap access is transformable into a local variable. Similarly, we
can conclude that the array accesses at 2© and 3© will always refer to l1[l3] and
l2[l4] respectively.

In what follows, we let I#P ∈ ĀP be the result of the analysis, which is computed

iteratively as described above. It is actually the least fixpoint of λX.I#0 tp
F#
P (X). We use 〈φk:j , θk:j〉 to refer to the abstract state assigned to program

point k:j in I#P . In addition, for a given procedure p, we define:

〈φp, θp〉 = ts{〈φ, θ〉 | p(x̄, ȳ)←g, bk1 , . . . , bkt ∈ P, k:t+1 7→ 〈φ, θ〉}

We refer to this abstract state as the summary of procedure p, which describes
the access paths of its parameters upon exit from p in terms of the initial values
that they take (see initial state I#0 which assigns a different access path to each
parameter). We assume that dom(φp) always consists of variables with names
x̄ and ȳ (just to avoid renamings).
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Example 6. Let us consider the rules for while and whilec in Figure 5. Note
that because of the assignment s1[s2]:=s3 in the second rule of whilec, the value
of θ at the exit of both rules for whilec will be { }. Since while and whilec are mu-
tually recursive, then it is for sure that θ will be empty also at the exit of while.
Hence, it hods that 〈φwhile , θwhile〉 = 〈{a 7→ l1, b 7→ l2, i 7→ l3, j 7→ l4}, { }〉 and
〈φwhilec , θwhilec 〉 = 〈{a 7→ l1, b 7→ l2, i 7→ l3, j 7→ l4, s0 7→ Aany}, { }〉.

3.3. Modular Analysis

References are often not globally constant, but they can be constant when we
look at smaller fragments. Fortunately, the analysis can be applied modularly by
partitioning the procedures (and therefore rules) of P into fragments which we
refer to as scopes, provided that there are no mutual calls between scopes. The
smaller the scopes are, the more precise the analysis result will be. Therefore,
the strongly connected components (SCCs) of the program are the smallest
scopes we can consider. We assume that each scope has a single entry. This is
not a restriction since otherwise the analysis can be repeated for each entry.

Given a program P , we let S1, . . . , Sn be the partitioning of its procedures
into scopes, where the entry procedure of each Si is pi. Since scopes are not
mutually recursive, we can assume that if there is a call from a procedure in Si
to a procedure in Sj , then i ≥ j. We refer to an inter-scope (resp. intra-scope)
call as an external (resp. internal) call. Our aim is to apply the analysis of
Section 3.2 in a modular way, by analyzing each scope separately, starting from
S1, then S2, etc. Each scope Sk is analyzed by assuming an initial state, as in
the non-modular case, but with a call to the entry procedure pk(x̄, ȳ).

In order to achieve this modularity, we extend the transfer function τ for the
case of external procedure calls, such that it uses the corresponding summaries.
Let p(w̄, s̄) be an external call, the result of τ(p(w̄, s̄), 〈φ, θ〉) is 〈φ′, θ′〉 where:

1. θ′ = θ ∩ θp
2. ∀z ∈ dom(φ) \ s̄, we have φ′(z) = φ(z); otherwise

3. ∀si ∈ s̄, then φ′(si) = ren(φp(yi), φ, θ) where ren is:

ren(A, φ, θ):
if A includes a field or array-type f 6∈ θ then return Aany

else return A[l1/φ(w1), . . . , ln/φ(wn)]

Intuitively, in (1) fields and array-types that might be updated during the exe-
cution of p are eliminated in the calling context; in (2) variables in the calling
context which are not output variables of p keep their current access paths; and,
in (3) the access paths of the output variables s̄ are incorporated into the calling
context.

Example 7. We demonstrate the modular analysis on the example of Figure 2.
We focus on method next, on the inner while loop of Example 5, and on the
(outer) while loop (whilem) inside method m, which calls method next and pro-
cedure while (and hence reuses their summaries). The translation of next and
the outer loop into the intermediate representation is as follows:
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next(〈this〉, 〈r〉)←
obj :=this.state,
s0 :=obj .next ,
this.state:=s0 ,
r:=obj .

whilem(〈a, b, y, o, i, j〉, 〈o, i, j〉)←
s0:=y,
hasNext(〈s0 〉, 〈s0 〉),
whilec

m(〈a, b, y, o, i, j, s0 〉, 〈o, i, j〉).

whilec
m(〈a, b, y, o, i, j, s0 〉, 〈o, i, j〉)←s0 = 0 .

whilec
m(〈a, b, y, o, i, j, s0 〉, 〈o, i, j〉)←s0 6= 0 ,

s0:=y,
4©next(〈s0 〉, 〈s0 〉),
o:=s0,
s1:=o.data,
i:=s1,
j:=s1,
while(〈a, b, i, j〉, 〈〉),
whilem(〈a, b, y, o, i, j〉, 〈o, i, j〉).

Let us consider the scopes S1 = {next}, S2 = {while,whilec} and S3={whilem ,
whilec

m}. We first analyze S1 which, in addition to the abstract states for each
program point, computes this summary for next:

〈φnext , θnext〉=〈{this7→l1, r 7→l1·state}, {next, aint}〉

The set θnext does not include field state, which indicates that its memory loca-
tion might be modified during the execution of next. The meaning of the access
path r 7→ l1 ·state is that the returned value of the method next is equal to the
value of dereferencing (upon entering the procedure) the first input argument
using the field state. Let us explain how this summary is reused when analyzing
the scope S3. When reaching program point 4© for the first time, we will have
the abstract state:

〈φ0, θ0〉=〈{a7→l1, b7→l2, y 7→l3, s0 7→l3, o 7→ l4, i 7→ l5, j 7→ l6}, {state, next, aint}〉

Note that θ0 includes all fields and array-types that appear in S1, S2 and S3,
since none has been updated so far. In order to incorporate the effect of exe-
cuting the method next into the calling context, we apply the transfer function
τ(next(〈s0〉, 〈s0〉), 〈φ0, θ0〉), which results in:

〈φ1, θ1〉=〈{a7→l1, b7→l2, y 7→l3, s0 7→l3·state, o 7→ l4, i 7→ l5, j 7→ l6}, {next, aint}〉

Now, the field state is not in θ1. The access path s0 7→ l3·state is obtained by
taking that of r, i.e., l1·state and renaming l1 to φ0(s0) = l3. We take φ0(s0)
since l1 refers to the value of the first argument when calling the method next,
which is s0. In the next iteration of the analysis, we reach 4© with the abstract
state:

〈φ2, θ2〉=〈{a7→l1, b7→l2, y 7→l3, s0 7→l3·state, o 7→ l4, i 7→ l5, j 7→ l6}, {next}〉

Observe that aint is not included in θ2, since it is removed when incorporat-
ing the summary of the inner while loop (computed from the analysis results
shown in Example 5), which modifies an array of integers. Next, applying
τ(next(〈s0〉, 〈s0〉), 〈φ2, θ2〉) results in:

〈φ3, θ3〉=〈{a7→l1, b7→l2, y 7→l3, s0 7→Aany, o 7→ l4, i 7→ l5, j 7→ l6}, {next}〉
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The access path s0 7→Aany is also obtained from r 7→ l1·state as before. However,
in this case ren returns Aany since l1·state includes the field state and state 6∈ θ3 .

Given an access pathA 6= Aany and an initial state C0 = 〈start, pi(x̄, ȳ), tv〉;h,
we let JAK(C0) be the value that corresponds to A in C0. For instance, for local
variables the value is obtained from the variable mapping Jl2K(C0) = tv(x2), for
fields the heap must be accessed as well Jl2·fK(C0) = h(tv(x2))·f , etc. (See Ap-
pendix A for the exact definition). Now we state the soundness theorem, as-
suming that the analysis results for each program point k:j are obtained in a
modular way as explained above.

Theorem 1 (soundness). Given a scope Si, a program point k:j in Si, and
a variable x ∈ Vk:j such that φk:j(x) = A 6= Aany. Then, for any trace C0 =
〈start, pi(x̄, ȳ), tv〉;h ;∗ 〈q, bc, tv ′〉·ar ;h′ where bc corresponds to the program
point k:j, it holds that tv ′(x) = JAK(C0).

4. Heap-Sensitive Analysis

This section presents the core of our method in three steps: we provide in
Section 4.1 some auxiliary definitions and the basic notion of (unconditional)
locality. Then, Section 4.2 introduces the notion of conditional partition that
will let us transform a heap access by a ghost variable access under certain con-
ditions. The use of ghost variables is a common technique in program proving.
Finally, we present in Section 4.3 an automatic transformation that actually
carries out the conversion.

4.1. Basic Locality

Let us first introduce two auxiliary notions which define the set of read and
write access paths to fields and to arrays within a scope. Intuitively, such sets
provide information on how a field or array-type is accessed in a scope (and
in its reachable scopes). This information is needed in Section 4.3 for soundly
tracking the values that are stored in such heap location.

Definition 1. Given a scope S and a field f , the set of read access paths for
f in S, denoted by R(S, f), is defined as R(S, f) = R◦(S, f) ∪R∗(S, f) where

R◦(S, f)= {A | bkj≡x:=y.f ∈ S,A=φk:j(y),A6=Anull}
R∗(S, f)= {A′ | bkj≡q(x̄, ȳ)∈S, q∈S′ 6=S,A∈R(S′, f),A′=ren(A, φk:j , θk:j)}

The set of write access paths for f in S, denoted W (S, f), is computed analo-
gously, by considering instructions of the form y.f :=x.

Let us explain the above definition. In R◦(S, f), for each access x:=y.f we
add the access path that the analysis has computed for y. Computing the read
access paths for a scope S requires computing the read access paths for all other
scopes transitively called from S. This is done in R∗(S, f). For each call such
that q is the entry of the scope S′ we take R(S′, f) and rename it according
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to the calling context using ren as defined in Section 3.3. Note that all access
paths in R(S, f) and W (S, f) refer to memory locations, they do not include
A such that A ∈ Z or A = Anull. The above definition extends for arrays in a
natural way.

Definition 2. Given a scope S and an array-type f ∈ {aref, aint}, the set
of read access paths for f in S, denoted by R(S, f), is defined as R(S, f) =
R◦(S, f) ∪R∗(S, f) where

R◦(S, f) = {A | bkj ≡ x:=y[z] ∈ S, stype(y)=f, φk:j(y) 6=Anull,A=φk:j(y)[φk:j(z)]}

and R∗(S, f) is as in Definition 1. The set of write access paths for f in S,
denoted W (S, f), is computed analogously, by considering instructions of the
form y[z]:=x.

Example 8. Using the results of the constancy analysis in Examples 5 and 7,
we have that the read/write access sets are: R(S1 ,next) = {l1 .state} and
W (S1 ,next) = {} and R(S1 , state) = W (S1 , state) = {l1}. In the scope of
the inner loop, we have that R(S2, aint) = W (S2, aint) = {l1[l3], l2[l4]}, since
the array content is read and modified using the references a[i] and b[j]. In
S3, we have that R(S3 ,next) = {l3 ·state}, W (S3 ,next) = {}, R(S3 , state) =
W (S3 , state) = {l3} and R(S3 , aint) = W (S3 , aint) = {l1 [l5 ], l2 [l6 ]}.

Intuitively, in order to ensure a sound transformation, a field can be consid-
ered local in a scope S if all read and write accesses to it in all reachable scopes
are performed through the same access path. This makes it safe to replace such
heap access by a corresponding ghost variable.

Definition 3 (locality). Given a field or an array-type f and a scope S, we
say that f is local in S if R(S, f) ∪W (S, f) = {l}.

Example 9. From the results computed in Example 8, we have that the array
type aint is not local in the scope S2 corresponding to the inner loop, because
R(S2, aint) = W (S2, aint) = {l1[l3], l2[l4]}, where l1, l2, l3, l4 stand for a, i, b, j
respectively, i.e., the union contains more than one element. But we have that
next and state are local in both S1 and S3. Consider again the small examples
in Figure 3: we have that in A©, field f is local in S1 because R(S1, f) = {l1}
and W (S1, f) = ∅. However, it is not local in S2 because R(S2, f)∪W (S2, f) =
{Aany}, as x.f could be z.f or y.f . In B©, we have that c is local in S1 because
R(S1, c)∪W (S1, c) = {l1}, while as before it is not local in S2 because R(S2, c)∪
W (S2, c) = {Aany}. In C©, size is not local because R(S1, size) ∪W (S1, size) =
{Aany}. Also, in D©, we have that R(S1, r) ∪W (S1, r) = {Aany}.

4.2. Locality Partition

In ideal scenarios in which fields are unconditionally local, we can transform
each local field access in the considered scope into an equivalent access using a
ghost variable which exposes the value of the field. However, there are cases in
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which the read and write sets do not provide enough information for tracking the
values stored in the corresponding locations. In such cases, it is often possible
to provide preconditions under which tracking such locations is possible. When
such conditions are used, any property for the locations that we infer (e.g., using
static analysis) is sound only for inputs that satisfy the precondition.

Definition 4 (aliasing preconditions). An aliasing precondition ϕ is a Bool-
ean formula

∨
i(
∧
j)cij where each cij is an atomic aliasing proposition of the

form A1 ≈ A2 or A1 6≈ A2.

The meaning of A1 ≈ A2 (resp. A1 6≈ A2) is, as expected, that A1 and A2

alias (resp. do not alias). For simplicity in the notation, we will use the term
aliasing for access paths that represent memory locations as well as integer
values. Note that, by definition, some propositions are valid, e.g., l1 ≈ l1, and
some are unsatisfiable, e.g., l1 6≈ l1. Moreover, for any access path A we let
A 6≈ Aany and A ≈ Aany be both false. This is because such accesses are
not constant. When an aliasing precondition ϕ implies another precondition
ϕ′ we write ϕ |= ϕ′. We will be mainly interested in implied atomic aliasing
propositions, e.g., ϕ |= A1 ≈ A2 and ϕ |= A1 6≈ A2.

Example 10. In our running example, we cannot precisely track the write ac-
cesses to the arrays (a or b) in S2 because the memory location accessed depends
on an aliasing condition: if a and b point to the same array, the content of such
array may be modified using both accesses, a[i] or b[j]. Furthermore, if i ≈ j, both
accesses are modifying exactly the same element of the array. Thus, the track-
ability of array accesses and, as a consequence, the number of ghost variables
needed to track them depends on some preconditions that are given in terms of
the initial parameters. E.g. assuming the precondition l1[l3] 6≈ l2[l4] over the
read/write sets in Example 8, we will need two different ghost variables to safely
represent these array references, because they are pointing to different memory
locations. However, if we assume that l1[l3] ≈ l2[l4], all accesses point to the
same array element, so we just need one ghost variable to track both array ac-
cesses. Our method will try all possibilities in order to find all preconditions for
which termination of the program can be shown.

Note that every A ∈ R(S, f)∪W (S, f) is associated to a set of program points in
which the corresponding field/array access appear. The set of all such program
points is denoted by rwpps(A).

Definition 5 (locality partition). Given a field or an array-type f , a scope
S, and an aliasing precondition ϕ, we say that a partition G1, . . . , Gn of R(S, f)∪
W (S, f) is a locality partition for f w.r.t. ϕ if:

1. ∀1 ≤ i ≤ n. ∀A1,A2 ∈ Gi. ϕ |= A1 ≈ A2; and

2. ∀1 ≤ i < j ≤ n. ∀A1 ∈ Gi. ∀A2 ∈ Gj . ϕ |= A1 6≈ A2.

3. ∀1 ≤ i < j ≤ n. ∀A1 ∈ Gi. ∀A2 ∈ Gj . rwpps(A1) ∩ rwpps(A2) = ∅.

We denote the locality partition by Pϕf .
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Let us explain the above definition: Condition (1) requires that the access paths
in each Gi alias, i.e., they all refer to the same memory location. Condition (2)
requires that access paths from different partitions do not alias, i.e., they refer
to different memory locations. The main idea is that now each component Gi
can be used to track the value stored in a corresponding memory location by
means of a different ghost variable. Condition (3) requires that every (trackable)
access in the program always refers to the same memory location. This condition
is added for simplifying the presentation and it could be omitted if we use a
polyvariant transformation [5] which clones the code for each calling pattern.
We say that the memory location induced by Gi is trackable.

If Aany ∈ R(S, f) ∪ W (S, f) then there is no partition that satisfies the
above definition. This is because in (1) we can take A1 = A2 = Aany for which
A1 ≈ A2 does not hold. Observe that Definition 3 induces a locality partition
w.r.t. the aliasing precondition true, i.e., the heap access is unconditionally
local.

Example 11. Partitions can be built by considering all possible equalities and
disequalities of the elements in R(S, f)∪W (S, f). Consider the read/write access
sets in S2 in Example 8, the following two locality partitions can be generated:
(1) G1 = {l1[l3], l2[l4]} which gives us the precondition ψ1 = {l1[l3] ≈ l2[l4]}, or
if we refer to the source code variables, then ψ1 = {a[i] ≈ b[j]}; (2) G1={l1[l3]},
G2={l2[l4]} which gives us the precondition ψ2 = {l1[l3] 6≈ l2[l4]} and equiva-
lently, using the source code variables, ψ2 = {a[i] 6≈ b[j]}.

4.3. Automatic Transformation

In addition to identifying when memory locations are trackable w.r.t. a given
precondition ϕ, we need to find a way to actually track them. Our approach
is based on instrumenting the program with extra local (ghost) variables that
expose the values of those locations to a heap-insensitive analysis as follows:
(1) for each trackable location induced by Gi, we introduce a ghost variable
g; (2) when the content of the memory location is modified, we modify g ac-
cordingly; and (3) when the memory location is read, we read the value from
g. This approach has one clear advantage: there is no need to change existing
static analysis tools to make them heap-sensitive, we simply apply them on the
transformed program, and then the properties inferred for the ghost variables
hold also for the corresponding memory locations. In the following we use S∗

to refer to the union of S and all other scopes reachable from S.

Definition 6 (locality transformation). Given a scope S, and a correspond-
ing locality partition Pϕf = 〈G1, . . . , Gn〉. The instrumented program T (Pϕf ) is
obtained by transforming all rules of S∗ as follows:

1. Let ḡ = 〈g1, . . . , gn〉 be n different ghost variable names;

2. Every procedure call or rule head p(x̄, ȳ) is replaced by p(x̄·ḡ, ȳ·ḡ); and

3. For every A ∈ Gi, and k:j ∈ rwpps(A), the field or array access at program
point k:j is replaced by gi.
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(pre-cond. ψ1) (pre-cond. ψ2)
while(〈arg , g1〉, 〈g1〉)←
s0:=a, s1:=i, s0:=g1,
whilec(〈arg , g1, s0〉, 〈g1〉).

whilec(〈arg , g1, s0〉, 〈g1〉)←s0≤0.
whilec(〈arg , g1, s0〉, 〈g1〉)←s0>0,
s1:=a, s2:=i, s3:=a, s4:=i,
s3:=g1, s3:=s3 − 1, g1:=s3,
s1:=b, s2:=j, s3:=b, s4:=j,
s3:=g1, s3:=s3 + 1, g1:=s3,
while(〈arg , g1〉, 〈g1〉).

while(〈arg , g1, g2〉, 〈g1, g2〉)←
s0:=a, s1:=i, s0:=g1,
whilec(〈arg , g1, g2, s0〉, 〈g1, g2〉).

whilec(〈arg , g1, g2, s0〉, 〈g1, g2〉)←s0≤0.
whilec(〈arg , g1, g2, s0〉, 〈g1, g2〉)←s0>0,
s1:=a, s2:=i, s3:=a, s4:=i,
s3:=g1, s3:=s3−1, g1:=s3,
s1:=b, s2:=j, s3:=b, s4:=j,
s3:=g2, s3:=s3+1, g2:=s3,
while(〈arg , g1, g2〉, 〈g1, g2〉).

Figure 6: Resulting bytecode after applying the transformations

Given k different fields f1, . . . , fk with locality partitions Pϕ1

f1
, . . . ,Pϕk

fk
, we let

T (Pϕ1

f1
, . . . ,Pϕk

fk
) be the program obtained by applying the above steps on each

Pϕi

fi
, iteratively.

Let us explain the above transformation: in step (1) we define the ghost
variables 〈g1, . . . , gn〉, where gi will be used to track the content of the memory
location induced by Gi; in (2) we add the ghost variables as input and output
arguments to all rules in S∗; and in (3) we simply replace accesses to the memory
locations by accesses to the corresponding ghost variables. When several fields
or arrays are going to be transformed, the instrumented program is obtained by
applying the transformation on each corresponding locality partition iteratively.
This is safe since fi 6= fk, which guarantees that the different partitions refer to
different memory locations.

Example 12. Using the preconditions and partitions of Example 11, we apply
Definition 6 twice, once for each precondition and obtain the two versions de-
picted in the two columns of Figure 6, where arg stands for a, b, i, j. The one
in the first column corresponds to the transformation for ψ1, and has one ghost
variable g1, and the one in the second column corresponds the one for ψ2 and
has two ghost variables g1 and g2. Observe that the second version always ter-
minates, while the first one might not because both array accesses, a[i] and b[j],
modify the same array location. Therefore, using the transformed program, a
heap-insensitive termination analyzer would infer that the while loop at hand
terminates for the precondition ψ2, i.e. {a 6≈ b ∨ i 6≈ j}.

We say that a configuration C satisfies an aliasing precondition ϕ, denoted by
C |= ϕ, iff for any A1 and A2 such that ϕ |= A1 ≈ A2 (resp. ϕ |= A1 6≈ A2),
it holds that JA1K(C) = JA2K(C) (resp. JA1K(C) 6= JA2K(C)). The following
soundness theorem states that any reachable state in the original program, has
a corresponding “equivalent” one in the transformed program. Given a ghost
variable gi, we let Agi be the memory location that gi tracks.
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Theorem 2. Let S be a scope with an entry p, Pϕ1

f1
, . . . ,Pϕk

fk
be locality par-

titions such that fi 6= fj, C0 = 〈start, p(x̄, ȳ), tv0〉;h0 such that C0 |= ϕ1 ∧
. . . ∧ ϕk, and C ′0 = 〈start, p(x̄ · ḡ, ȳ · ḡ), tv ′0〉;h0 such that tv ′0 extends tv0 with
tv ′(gi) = JAgiK(C0): If C0 ;n 〈q, bcn, tvn〉·ar ;hn is a possible execution using
S, then C ′0 ;n 〈q, bcn, tv

′
n〉·ar ;h′n is a possible execution using the correspond-

ing T (Pϕ1

f1
, . . . ,Pϕk

fk
) and tvn(x) = tv ′n(x) for any x ∈ dom(tvn).

An interesting aspect of using locality partitions is that we can improve the
accuracy of the unconditional heap-insensitive analysis even in cases for which
programs terminate unconditionally. The reason is that considering the parti-
tions separately gives us a kind of disjunctive reasoning that we lack in the basic
locality transformation. Let us see an example.

Example 13. Consider the following method p which receives as parameters
two objects of type A. Assume that class A has an integer field f.

void p(A x, A y) {
while (x.f > 0) {

x.f--;
y.f--;

}
}

This loop (and hence the method) always terminates. However, by applying the
locality condition, we cannot prove it. The reason is that the read and write
access paths for f are R(S, f) = W (S, f) = {l1, l2}, where S corresponds to the
scope of the while loop. Thus, it cannot be transformed. Let us consider the
locality partitions Pϕ1

f and Pϕ2

f , where the first one consists of the unique set
{l1, l2} and ϕ1 = {l1 ≈ l2}, and the second one contains two sets {l1},{l2} and
ϕ2 = {l1 6≈ l2}. The locality transformation for Pϕ1

f and Pϕ2

f gives respectively:

(pre-cond. ϕ1) (pre-cond. ϕ2)
void p(A x, A y, int g) {

while (g > 0) {
g--;
g--;

}
}

void p(A x, A y, int gx, int gy) {
while (gx > 0) {
gx--;
gy--;

}
}

Heap-insensitive termination analysis can prove termination for both methods.

4.4. Heuristics for References

In the above transformation, we track all possible heap accesses. However,
it is also safe not to track all of them. This means that we can select some of
the Gi to be transformed. This is especially interesting when the heap accesses
are reference fields or arrays of references. In theses cases, it is usually a good
heuristic to track the locations that are used for traversing the data structures
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(also called cursors), but do not track reference fields which are part of the
data structure itself. This distinction can often be discovered because cursors
are both read and updated, hence Gi ∩ R(S, f) 6= ∅ and Gi ∩ W (S, f) 6= ∅,
while references that are part of the data structure are typically only read, i.e.,
Gi ∩W (S, f) = ∅.

Example 14. In order to prove termination of methods that use method next
to traverse the list (e.g., method m), we need to infer that the “size of state”
decreases every time we execute method next. We use the path-length abstraction
[30] (i.e., the longest reachable path from the considered reference) as a size
measure to check how the size of non-cyclic data structures is modified. By
applying Definition 5 (or simply Definition 3), both reference fields state and
next are local in the scope of the method unconditionally. Thus, it is possible
to convert them into respective ghost variables vs (for state) and vn (for next).
The rule defining next of Example 7 would be transformed into:

next(〈this, vs , vn〉, 〈vs , vn , r〉) ← obj:=vs, so:=vn, vs:=s0, r:=obj .

for which we cannot infer that the path-length of vs in the output is smaller than
that of vs in the input. In particular, the path-length abstraction approximates
the effect of the instructions by the constraints {obj = vs , s0 = vn , v

′
s = s0 , r =

obj}. Primed variables are due to a single static assignment. The problem is
that the transformation replaces the assignment s0:=obj .next with s0:=vn. Such
an assignment is crucial for proving that the path-length of vs decreases at each
call to next. If, instead, we transform this rule w.r.t. the field state only:

next(〈this, vs〉, 〈vs , r〉) ← obj :=vs , s0 :=obj .next , vs :=s0 , r :=obj .

the path-length abstraction approximates now the effect of the instructions by
{obj = vs , s0 < obj , v ′s = s0 , r = obj} which implies v′s<vs. The important
point is that, in the second constraint, when accessing a field of an acyclic data
structure, the corresponding path-length decreases. This enables us to prove ter-
mination of loops that use next (like in m) by relying only on the field-insensitive
version of path-length (note that [30] is not field-sensitive).

In summary, our approach can be used to prove termination of programs which
use common patterns in OO languages such as iterators and enumerators by
using a heuristics which tries to transform only those reference heap accesses
which are used as cursors to the data structures. This is achieved by requiring
that the field (or array) is both read and written in the scope.

5. Inference of Termination Preconditions

In this section, we describe our approach for inferring aliasing preconditions
that, when they hold in the initial state, guarantee the termination of the pro-
gram under consideration. Our approach is defined in two stages: (i) we first
find preconditions that guarantee local termination, i.e., they guarantee that
the loops defined in a given scope S are terminating, ignoring the termination
behavior of loops defined in scopes that are called from S; and (ii) in a second

23



Input : A scope S
Output: Local termination preconditions

1 Choose the set of fields of interest FS = {f1, . . . , fk};
2 Generate all possible locality partitions P∗ for FS ;
3 ϕ = false;
4 foreach 〈Pϕ1

f1
, . . . ,Pϕk

fk
〉 ∈ P∗ do

5 if Termin returns true on T (Pϕ1

f1
, . . . ,Pϕk

fk
) then

6 ϕ = ϕ ∨ (ϕ1 ∧ · · · ∧ ϕk);
7 end

8 end
9 return ϕ;

Algorithm 1: Inference of local termination preconditions for a scope S

step, we use the local preconditions in order to obtain conditions on global ter-
mination which guarantee that the loops of S as well as those of scopes that
are transitively called from S are terminating. Note that if S does not call any
other scope, then local and global termination are equivalent for S.

5.1. Inference of Local Termination Preconditions

Given a scope S, the purpose of this section is to describe how to infer an
aliasing precondition ϕ which guarantees the local termination of S. Algorithm 1
outlines the steps to generate ϕ. At line 1, we choose the set of fields of interest
FS from all fields that are accessed in S∗. We consider S∗ and not S since
accesses in S∗ \S might indirectly affect the values of fields in S. Note that any
subset chosen leads to a safe transformed program since the lack of some fields
only implies computing less precise information. For instance, for the sake
of efficiency, one can select only the fields that might affect the termination
behaviour of the program (see, e.g., the approximation of [7]).

Line 2 computes all possible partitions of the read and write sets for the
elements f ∈ FS , denoted P∗. For each field f , each corresponding partition
〈G1, . . . , Gn〉 is created by adding aliasing propositions that state the following:
(1) Any A1,A2 ∈ Gi are equal; and (2) Any A1 ∈ Gi and A2 ∈ Gj are different
when i 6= j. Stating that two access paths A1 and A2 are equal (resp. different)
is done by writing A1 ≈ A2 (resp. A1 6≈ A2). However, when A1 and A2

have a similar structure, this can be done by comparing their corresponding
components. For example, if A1 = l1[l2] and A2 = l1[l3], we can use l2 ≈ l3
(resp. l2 6≈ l3), and if A1 = l1[l2] and A3 = l3[l4], we could use l1 ≈ l3 ∧ l2 ≈ l4
(resp. l1 6≈ l3 ∨ l2 6≈ l4).

In line 5, we assume the existence of a heap-insensitive termination analysis
procedure Termin that is able to answer the question: does S locally terminate
for any input? As remainder, T (Pϕ1

f1
, . . . ,Pϕk

fk
) denotes the program obtained

by applying the steps in Definition 6 on each Pϕi

fi
, iteratively. Note that lo-

cal termination does not prove termination of loops in scopes invoked from S;
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however, it needs to transform them in order to track the modifications that
invoked scopes might perform on the sizes of data. The answer of Termin, as
expected, is not definitive, it might be yes or don’t-know. For each locality par-
tition of the involved fields (line 4), we run the local termination analyzer on
the program resulting from applying the locality transformation in Definition 6
w.r.t. such locality partition. If Termin returns true, according to Theorem 2,
S locally terminates when the precondition holds in the input state. In line 6,
we perform the disjunction of the current result with the preconditions obtained
from the previous partitions such that the final result is the disjunction of all
preconditions for which the program terminates.

Example 15. Let us apply Algorithm 1 on the scope S2 (inner loop) of our
running example. Step 1 gives us the type aint. At line 2, the two partitions of
Example 11 are generated. Thus, the foreach loop performs two iterations. When
considering the locality partition Pψ2

aint where the precondition is ψ2={l1 6≈l2 ∨
l3 6≈l4}, the transformed program of Figure 6 (right) is constructed and Termin

returns true in line 5. Hence, ϕ (initialized to false) takes now the value ψ2. In

the next iteration, the locality partition Pψ1
aint is considered and the transformed

program of Figure 6 (left) is constructed. In this case, Termin returns don’t-
know and hence ϕ remains with the value ψ2 assigned in the previous iteration,
which is returned as result in line 9.

5.2. Inference of Global Termination Preconditions

Let us first explain intuitively how Algorithm 2 infers global termination
preconditions. Consider a scope S that includes a call bkj = p(x̄, ȳ) ∈ S to a
procedure p that is defined in a different scope S′. Moreover, assume that S′

does not call procedures that are defined in other scopes. In a first step, we have
inferred local termination preconditions ϕ1 and ϕ2 for S and S′, respectively,
by means of Algorithm 1. In this step, we will combine ϕ1 and ϕ2 into global
termination preconditions ψ1 and ψ2, respectively. For S′, clearly we can take
ψ2 = ϕ2, since it does not call any other scope. For S, we seek a precondition
ψ1 such that ψ1 |= ϕ1; and ψ2 holds whenever the execution reaches the call
to p. We take ψ1 = ϕ1 ∧ ψ′2, where ψ′2 is obtained from ψ2 by replacing each
li by φ

k:j
(xi). Intuitively, ψ′2 is the global termination precondition of p, but

expressed in terms of the input to the entry of S. This process is applied for all
scopes in reverse topological order, i.e., starting from the one which does not
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call any other scope, until the one that includes the main entry procedure.

Input : Scopes S1, . . . , Sn
Output: Local and Global termination preconditions

1 for i← 1 to n do
2 LC[i] = LocalCondTermin(Si);
3 ϕ← LC[i];

4 foreach external call bkj ≡ p(x̄, ȳ) ∈ Si where p ∈ Sh do
5 ϕ← ϕ ∧ ψ[l1/φk:j(x1), . . . , lm/φk:j(xm)] where ψ = GC[h];
6 end
7 GC[i]← ϕ;

8 end

Algorithm 2: Computing termination preconditions

Algorithm 2 outlines the main steps to generate global termination precondi-
tion for all scopes. The outer loop iterates over the scopes in reverse topological
order and computes a global termination precondition for each scope Si. At line
2, we compute a local termination condition LocalCondTermin(Si) for Si using
Algorithm 1. This condition is also used at line 3 as its initial global termina-
tion precondition. Then, the inner loop traverses all calls to external scopes,
for each such call, at line 5, it translates the global termination condition of the
corresponding Sh to be in terms of the input of Si, and adds it to the global
precondition of Si. When the algorithm terminates, LC[i] and GC[i] will be,
respectively, the local and global termination precondition for the scope Si.

Example 16. Consider the analysis of the scope S corresponding to method
m in Figure 2. Inferring global termination of m requires the analysis of all
scopes invoked in the method. Let us focus on S1 (method next), S2 (the inner
loop) and S3 (the outer loop). The application of Algorithm 1 on S1 com-
putes the precondition true (see Example 14). Algorithm 1 on S2 computes the
precondition ϕ = {l1 6≈ l2 ∨ l3 6≈ l4} (see Example 15). For scope S3, Algo-
rithm 2 is able to prove termination (ignoring the inner loop) unconditionally
by using a unique ghost variable for the field state and considering the size re-
lations inferred in Example 14. Once all local conditions for S1, S2 and S3

have been computed, Algorithm 2 proceeds as follows: LC[1] and LC[2] are ini-
tialized to values true and ϕ, respectively. As there are no external calls in S1

nor in S2, the foreach loop at line 4 is not executed for any of the scopes, and
GC[1] = true and GC[2] = ϕ (line 7). In the iteration on S3, GC[3] is initialized
to ϕ′ = true. The interesting point is in the call to the inner loop, for which
it is required a renaming according to the access path information φ stored at
the program point just before the inner loop. According to Examples 7 and 14,
we have {i 7→ l3·state·data, j 7→ l3·state·data} ∈ φ. Line 5 of Algorithm 2
computes ϕ′ = ϕ[l1/l1, l2/l2, l3/l3·state·data, l4/l3·state·data], which results in
ϕ′ = {l1 6≈ l2 ∨ l3 ·state·data 6≈ l3 ·state·data} = {l1 6≈ l2} as global precondition
for S3, and then for method m.
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6. Experiments

We have implemented our technique in COSTA [8], a COSt and Termi-
nation Analyzer for Java bytecode. The implementation can be tried out at
http://costa.ls.fi.upm.es by setting the enable field sensitive analysis op-
tion in the manual configuration to conditional. Also, we have an option condi-
tional heuristic which, if set to references, applies the heuristics in Section 4.4
to treat reference data.

In order to assess the practicality of the approach on realistic programs, we
have tried to infer the termination of all methods that contain heap accesses in
their guards for all classes in the Apache Commons Project [26] libraries. These
are libraries widely used for the development of industrial applications. The
analysis is applied at “class” level, i.e., if the analyzed method invokes other
methods defined in the same class, they are transitively analyzed, while those
methods that belong to a different class are ignored by the analysis. The main
reason for performing class level analysis is to avoid the analysis of the Java
standard libraries. This is known to pose several difficulties for termination
analysis which are outside the scope of this paper. Also, it should be noted that
class level analysis gives us a better control on the results obtained. Basically, if
we fail to analyze a method in one class, we do not propagate this failure to other
methods that invoke it outside the class. Experiments have been performed on
an Intel(R) Core(TM)2 Duo CPU P8700 2.53GHz with 4GB of RAM running
Linux 3.2.0.

We have analyzed all methods (505 in total) from the Apache Commons
Project libraries containing loops with heap accesses. We have analyzed each
method using the three different approaches implemented in COSTA, (1) heap-
insensitive analysis, that ignores the information stored in the heap, (2) un-
conditional heap-sensitive, and, (3) conditional heap-sensitive analysis (which
generates locality partitions and composes the termination preconditions). We
have run the analysis with a timeout for each method of 3, 6 and 7 minutes re-
spectively for the heap-insensitive, unconditional heap-sensitive and conditional
heap-sensitive analyses. Out of the 505 methods, 74 have exceeded the time
out: 36 of them already exceeded the timeout in the heap-insensitive analysis,
while the remaining ones exceeded it when adding the heap-sensitive flag (for
both conditional and unconditional).

Table 1 summarizes our experimental results for the 431 methods which do
not exceed the time out. They contain in total 564 loops with heap accesses
in their guards. The first column shows the library name. Column #M shows
the number of methods, #L the number of loops analyzed for each library and
#B the number of bytecode instructions for the analyzed code. Columns within
Termination show the number of methods for which COSTA can guarantee
termination for the three approaches, T I for heap-insensitive, TU, for uncondi-
tional heap-sensitive and TC for conditional heap-sensitive analysis. Our results
clearly show that the precision gained by using heap-sensitive analysis is quite
significant, going from 8.6% of methods that can be proven terminating using
heap-insensitive analysis to 71.9% for unconditional heap-sensitive analysis, and,
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Statistics Termination O Unconditional O Conditional

Library #M #B #L TA T I TU TC #O1.5 #O2 #O2+ #O1.25 #O1.5 #O1.5+

BCEL 59 4216 76 67.8 1 49 52 16 27 16 45 5 9
BeanUtils 3 467 4 3.5 0 1 1 0 1 2 2 0 1
Betwixt 2 44 2 0.3 0 2 2 0 2 0 2 0 0
Chain 1 377 1 1.2 0 1 1 0 0 1 0 1 0
Collections 25 1341 25 4.8 8 18 18 12 8 5 21 3 1
Compress 6 802 9 5.7 2 5 5 2 4 0 5 0 1
Configuration 11 985 11 6.3 1 9 10 3 2 6 10 1 0
DBCP 2 911 2 4.4 0 1 1 0 0 2 1 0 1
Digester 4 359 4 6.3 0 3 3 1 2 1 3 1 0
Discovery 2 68 2 0.1 0 2 2 0 0 2 2 0 0
EL 14 1190 18 11.0 1 8 8 4 4 6 13 1 0
IO 8 504 8 1.8 0 7 7 3 5 0 8 0 0
JCI 1 68 1 0.2 1 1 1 0 1 0 1 0 0
JCS 19 967 20 24.3 0 14 15 7 10 2 18 0 1
Jexl 14 976 14 5.4 1 11 11 6 4 4 11 2 1
Lang 14 1798 22 49.0 9 11 11 9 4 1 13 1 0
Math 192 23870 274 317.8 11 133 167 62 61 69 101 15 76
Net 3 187 4 1.2 2 3 3 1 2 0 3 0 0
Pool 21 529 21 3.9 0 20 20 12 8 1 21 0 0
Sanselan 23 2872 38 117.7 0 9 11 10 4 9 11 5 7
SCXml 1 101 2 0.6 0 0 0 0 0 1 1 0 0
Transaction 1 38 1 0.2 0 0 0 1 0 0 1 0 0
Validator 5 368 5 2.8 0 2 2 2 2 1 2 0 3

Summary 431 43038 564 636 37 310 351 151 151 129 295 35 101
Percentages 8.6% 71.9% 81.4% 35.0% 35.0% 29.9% 68.4% 8.1% 23.4%

Table 1: Experimental evaluation on Apache libraries

to 81.4% for conditional heap-sensitive analysis. One remarkable issue is that all
methods that can be proven terminating only using conditional heap-sensitive
analysis do not require aliasing preconditions because all partitions generated
terminate unconditionally. That means that even if these methods terminate
unconditionally, they require conditional analysis because the basic locality is
not enough to guarantee the soundness of the transformation (see Example 13).

We also evaluate the efficiency of the analysis. Column TA shows the time
(in seconds) taken by the heap-insensitive analysis. Columns within O Un-
conditional show the overhead introduced by the unconditional heap-sensitive
approach over the heap-insensitive analysis time. Columns #O1.5, #O2 and #O2+

show the number of methods with an overhead under 1.5, between 1.5− 2 and
greater than 2, respectively, over heap-insensitive analysis. We can observe that
70% (35 + 35) of the methods have an overhead under 2. This percentage is
clearly acceptable for the gain of precision obtained by adding heap-sensitivity,
from 8.6% to 71.9%. Conditional heap-sensitivity adds an additional overhead
w.r.t. unconditional heap-sensitive approach. This can be seen in O Conditional,
which shows the overhead introduced by the conditional approach w.r.t. the un-
conditional one. Columns #O1.25, #O1.5 and #O1.5+ show the number of methods
that have an overhead under 1.25, between 1.25 − 1.5 and greater than 1.5,
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respectively. Note that 68.4% of the methods are analyzed with an overhead
under 1.25, which is quite small, while we gain some further precision, namely
from 71.9% to 81.4% (41 methods). Altogether, we argue that our results show
that the accuracy gained by heap-sensitive analysis is very significant while the
overhead is reasonable and, thus, our approach pays off in practice.

7. Comparison with other Termination Tools

The goal of this section is to study whether the technique described in this
paper is significant not only for the conditional termination of a program but also
for the unconditional heap-sensitive termination analysis of Java programs. For
this purpose, we compare the unconditional heap-sensitive approach described
in this paper, implemented as an extension of COSTA [8], with two state-of-the-
art termination tools, AProVE [24] and Julia [30]. AProVE is a termination
analysis tool which transforms a Java bytecode program into a term rewriting
system, and Julia transforms it into a Constraint Logic Program (CLP), and
then they study the termination of the transformed programs.

The comparison of the tools is performed by analyzing a program that con-
tains a basic loop which terminates unconditionally and uses one heap access
(H) in its loop condition, decrementing its value within the loop:

p (. . . ) {
while (H > 0) {
H --;
}

}

For performing the comparison, H will be replaced by several forms of heap
accesses, such as field accesses, array accesses and their combinations, and the
resulting program is analyzed for each tool. Each time we analyze three differ-
ent programs, (1) a program that only contains a method with the basic loop
(method p), without an explicit initialization of the heap; (2) a main method
that explicitly creates the heap before invoking the method with the loop; and,
(3) a modification of the loop which instead of decrementing the heap value
inside the loop, it calls another method (q) which decrements the value stored
in the heap. Let us see an example of the programs obtained by instantiating
H with concrete code that accesses x.f:

(1) (2) (3)

p (Obj x) {
while (x.f> 0) {

x.f --;
}
}

main (. . . ) {
Obj x = new Obj ();
x.f = 10;

c©x.p(x); //x.p2(x);
}

p2 (Obj x) {
while (x.f> 0) {
q(x);
}

}

q (Obj x) {
x.f --;

}

In what follows, variables are named using this convention: i, j represent integer
variables; a an array of integers; x, y, z reference variables; and, xs an array of
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H COSTA AProVE Julia
Tp Tm Tc Tp Tm Tc Tp Tm Tc

(1) x.fi yes yes yes yes yes yes - yes unk
(2) x.fy.fi yes yes yes yes yes yes - yes unk
(3) x.fy.fz.fi yes yes yes yes yes yes - unk unk
(4) a[i] yes yes yes unk yes yes - unk unk
(5) fa[i ] yes yes yes unk yes yes - unk unk
(6) a[x.fi] yes yes yes unk yes yes - unk unk
(7) x.fa[x.fi] yes yes yes unk yes yes - unk unk
(8) xs[i].fi yes yes yes unk yes yes - unk unk
(9) a[i][j] unk unk unk unk unk unk - unk unk

(10) iterator yes yes yes yes yes yes - yes yes

Table 2: Termination tools comparison

objects. Identifiers that start by f are fields instead of local variables. Table 2
shows the results obtained for ten different types of heap accesses. Column H
shows the heap access used to instantiate H, column Tp shows the result ob-
tained by analyzing directly method p, column Tm shows the result of analyzing
the main method, which initializes the heap before calling p, and column T c

shows the result of analyzing the main method but calling method p2 instead of
p at program point c©.

In the results displayed in Table 2, we can observe that, also for the uncon-
ditional case, our approach improves the capabilities of state-of-the-art termi-
nation analyzers. COSTA and AProVE behave similarly only when the analysis
starts from a main method and thus it is possible to symbolically execute the
instructions that involve heap accesses. However, it is very important to notice
that modular analysis, and analysis of incomplete code, requires a scope-based
approach like ours, where the analysis is able to analyze methods independently
from their used context. On the other hand, the table shows that Julia cannot
handle loops whose termination depends on data stored in arrays, even if the ar-
rays have been explicitly initialized in a main method. Column Tp for the Julia
analyzer is not evaluated because Julia requires a main method to analyze the
program. Finally none of the studied tools can handle multidimensional arrays.
Thus, given the obtained results, we argue that the precision achieved by using
our unconditional heap-sensitive approach is significant and it allows analyzing
programs that are not complete (such as library methods) and modular analysis.

8. Related Work

Traditionally, existing approaches to reason on shared mutable data struc-
tures either track all possible updates of heap-allocated data (endangering effi-
ciency) or abstract all field updates into a single element (sacrificing accuracy).
Our work does not fall into either category, as it does not track all heap-allocated
updates but rather only those which behave like non heap-allocated variables.
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As our experiments show, our approach is sufficiently precise for scope-based
reasoning while introducing a reasonable overhead, as required in important
applications, such as termination and resource analysis.

Miné’s [23] value analysis for C takes a different approach by enriching the
abstract domain to make the analysis field-sensitive. The motivation here is
different from ours, his analysis is developed to improve points-to analysis in
the presence of pointer arithmetics. Similarly, [14] enriches a numeric abstract
domain with alien expressions (field accesses). Without additional information,
such as reference constancy analysis, this domain would be rather limited (im-
precise) for bytecode.

We have applied our approach to the context of termination analysis. In this
sense, our work continues and improves over the stream of work on termination
analysis of object-oriented bytecode programs [4, 24, 2, 29, 27]. For numeric
data, termination analyzers rely on a value analysis which approximates the
value of numeric variables (e.g. [17]). Some field-sensitive value analyses have
been developed over the last years (see the work of Miné mentioned above [23]).
For heap-allocated data structures, path-length [29] is an abstract domain which
provides a safe approximation of the length of the longest reference chain reach-
able from the variables of interest. This allows proving termination of loops
which traverse acyclic data structures such as linked lists, trees, etc. However,
the path-length abstract domain, and its corresponding abstract semantics, as
defined in [29] is field-insensitive in the sense that the elements of such domain
describe path-length relations among local variables only and not among refer-
ence fields. Thus, analysis results do not provide explicit information about the
path-length of reference heap-allocated data. This article extends our previous
work [4, 5] by handling array contents and proving termination conditionally,
i.e., inferring aliasing preconditions under which termination can be proven.

As regards the reference constancy analysis, equivalent notions have been de-
fined for other languages (see [1] and its references) and for different purposes.
Our work adapts and extends such analyses to consider arrays and fields in a
uniform way. Also, the analysis in this paper generalizes our previous reference
constancy analyses [4] which infers information only on class fields, to consider
arrays, integer variables and arithmetic expressions. There is also a lot of work
devoted to inferring shape invariants of data-structures (see, e.g., [28], [18]).
These techniques can, in principle, be used for inferring accurate reference con-
stancy information, but at a much higher performance cost since they target
more complex properties. These approaches are sometimes limited to some
predefined data-structures such as linked lists.

There are termination analysis techniques [12] that rely on shape analysis
in order to track the depth (i.e., the path-length) of data-structures to which
variables points-to. This means that they would fail to observe a decrease in
the depth of a data-structure pointed to by a field when such decrease does
not imply a corresponding one at the level of a variable. For example, in the
iterator example shown in Section 4.4, we have seen that given an object x of
type ListIter, it is necessary an analysis which is able to model the path-length
of field x.state and not that of x. Namely, we need a heap-sensitive analysis
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based on path-length, which is one of our contributions in this article. Applying
these techniques on our transformed programs, we expect them to infer the
required information without any modification to their analyses. In order to
track numerical values that are stored in fields, these approaches require further
modifications [19].

Finally, conditional termination has been considered before in [13, 15]. In
these works, the focus is in inferring termination conditions on the numerical
variables, and not on the reference variables as we do.

9. Conclusions and Future Work

Heap sensitiveness is considered currently one of the main challenges in static
analyses of object-oriented languages. We have presented a novel practical ap-
proach to heap-sensitive analysis which handles arrays and object fields (numeric
and references) in a uniform way. The basic idea is to partition the program
into fragments and track heap-allocated data by means of corresponding ghost
variables which expose their values at each fragment, whenever such conver-
sion is sound. If the conversion is not sound for any context, our technique
can infer automatically aliasing conditions which guarantee termination if they
hold in the initial state. The conditional transformation introduces a kind of
disjunctive reasoning in our approach that allows us to improve the accuracy
to prove termination of certain loops that indeed terminate unconditionally but
the unconditional heap-sensitive approach cannot prove it.

In the future, we plan to extend our work in several directions. We want to
consider a concurrent language and study how our analysis has to be adapted
to produce sound and precise results in the presence of concurrency. A first
step in this direction has been already taken in [3] for a language based on the
concurrent objects paradigm [20]. We plan to extend our language with thread-
based concurrency instead. Another objective is to improve the efficiency of our
analyzer. For this purpose, we want to make field-sensitive analysis incremental
in such a way that code can be analyzed during software development and, when
the code is modified, the incremental analysis recomputes the least possible
information. Incremental resource analysis [9] has been developed in the heap-
insensitive context.
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Appendix A. Proofs

Appendix A.1. Proof of Theorem 1

Let us formally define JAK(C), i.e., how to interpret the access pathA 6= Aany

in a configuration C = 〈q, bc, tv〉·ar ;h:

JAnullK(C) = null
JnK(C) = n

Jli·f1· · ·fnK(C) = Jf1· · ·fnK(C, tv(xi))
Jli[A]·f1· · ·fnK(C) = Jf1· · ·fnK(C, h(tv(xi)).v)) where v = JAK(C)

Jf ·F1· · ·FnK(C, x) = JF1· · ·FnK(C, h(x).f)
Jf [A]·F1· · ·FnK(C, x) = JF1· · ·FnK(C, h(h(x).f).v) where v = JAK(C)

JεK(C, x) = x

The first two cases are straightforward. The third (resp. sixth) case evaluates
li (resp. li[A]), and then makes a recursive call to dereference (when n > 0) the
corresponding object with f1 . . . fn, which is done iteratively by the last three
cases.

Let us consider first the analysis of a standalone scope S, i.e., a scope that
does not call procedures from other scopes. Afterwards, we consider the modular
case. Assume a given standalone scope S with an entry procedure p, the analysis
is applied iteratively using I#i+1 = I#i tp F

#
i+1(I#i ), starting from an abstract

state I#0 that maps every program point k:j of S to ⊥p, except for program point
0:0 which is mapped to the initial abstract state 〈φ,fields(P ) ∪ {aint, aref}〉
in which φ(xi) = li; and φ(yi) is 0 or Anull depending on the type of yi.

Similarly to F#, we define F (X) = {C ′ | C ∈ X, C ; C ′}, Ii+1 = Ii∪F (Ii),
and I0 = {C0} where C0 = 〈start, p(x̄, ȳ), tv0〉;h0. Each Ii represents that set
of reachable states in at most i derivation steps, when starting from C0. For
simplicity, we assume that each yi in the initial state is either 0 or null, this does
not restrict the correctness statements since these values are never used (they
are overwritten upon exit).

In order to show that Theorem 1 is correct for the standalone case, it is
enough to show that the following holds:

For any C0 = 〈start, p(x̄, ȳ), tv0〉;h0, if C = 〈q, bc, tv〉·ar ;h ∈ Ii,
and bc corresponds to program point k:j (different from 0:0), then

k:j 7→ 〈φ, θ〉 ∈ I#i such that

(1) φ(x) = A 6= Aany ⇒ tv(x) = JAK(C0);

(2) if f ∈ θ, then:

(2.1) if f ∈ fields(P ), r ∈ dom(h0), and h(r) is an object that
has a field with name f , then h0(r).f = h(r).f ;

(2.2) if f ∈ {aint, aref}, r ∈ dom(h0), and h0(r) is an array of
static type f , then the elements of h0(r) and h(r) have the
same values;
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We say that 〈φ, θ〉 correctly approximates C. Note that our main interest is in
showing that (1) holds, (2) is an auxiliary statements required for doing this.

We prove the above claim, for an arbitrary C0, by induction on the number
of iterations when computing Ii and I#i (i.e., on i). The claim trivially holds

for i = 0. We assume it holds for Ii and I#i , and now we show that it holds for

Ii+1 and I#i+1.
Pick an arbitrary C ′ = 〈q′, bc′, tv ′〉·ar ′;h′ ∈ Ii+1, and let bc′ correspond to

program point k:j. Assume C ′ 6∈ Ii, otherwise the claim holds by the induction
hypothesis. Thus C ′ ∈ F (Ii), i.e, we have C = 〈q, bc, tv〉·ar ;h ∈ Ii such that
C ; C ′. We prove that the claim holds for such case by considering all possible
ways to move from C to C ′. In particular we prove that there is 〈φ, θ〉 in F (I#i+1),
associated to the program point of bc′, that correctly approximates C ′.

First note that, by the induction hypothesis, there is k:j 7→ 〈φ, θ〉 ∈ I#i that
correctly approximates C, i.e., satisfies conditions (1) and (2) for C. In what
follows, when we refer to 〈φ, θ〉, we mean exactly this one.

Let us start by considering the simple instructions, i.e., those that do not
correspond to calling (or returning from) a procedure. For such cases, using

〈φ, θ〉 and F#
1 , we compute k:j+1 7→ 〈φ′, θ′〉. We claim that 〈φ′, θ′〉 correctly

approximates C ′.

Case 1: x:=y.f . We have θ′ = θ, and φ′ is different from φ only by the value
of x. Trivially, Condition (2) holds since the heap is not modified, and Condi-
tion (1) holds for any variable which is different from x. We show that Condi-
tion (1) holds also for x. If φ′(x) = Aany then Condition (1) trivially holds for
x. The other possibility is that φ′(x) = A·f , in which case tv(y) = tv ′(y) =
A 6= Aany and f ∈ θ, then we have tv ′(x) = tv(y).f = JAK(C0).f = JA·fK(C0).

Case 2: x.f :=y. Clearly Condition (1) holds since no variable is updated. Also
Condition (2) holds since the only field that has been modified is removed from
the set θ.

Case 3: x:=n. Clearly Conditions (1) holds for any variable different from x,
and it trivially holds for x since its access path is the number n. Condition (2)
also holds since these instructions does not modify the heap.

Case 4: x:=null. Straightforward using the same reasoning as in Case 3.

Case 5: x:=y. Clearly (1) holds for any variable different from x. It holds also
for x because tv ′(x) = tv(y) = Jφ(y)K(C0) = Jφ(x)K(C0).

Case 6: x:=y aop z. Clearly Condition (1) holds for any variable different from
x. If φ′(x) = Aany then it trivially holds for x also. If φ′(x) 6= Aany, then φ(y)
and φ(z) must be numbers, and thus tv ′(x) = tv(y) + tv(z) = Jφ(x)K(C0) +
Jφ(z)K(C0) = Jφ′(x)K(C0).

Case 7: x:=newarray(D, y). Clearly Condition (1) holds for any variable differ-
ent from x. It holds also for x since φ′(x) = Aany. Condition (2) holds since no
field or array-type is modified.
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Case 8: x:=y[z]. Analogue to Case 1.

Case 9: x[y]:=z. Analogue to Case 2.

Case 10: x:=new C. Like Case 7.

Case 11: x:=arraylength(y). Clearly Condition (1) holds for any variable differ-
ent from x. It holds also for x since φ′(x) = Aany. Condition (2) holds since no
field or array-type is modified.

Now we consider the case of a procedure call. For this, we assume that C
is of the form 〈q, q′(w̄, z̄) · bc′′, tv〉·ar ;h, and we make an execution step using
a corresponding rule q′(x̄, ȳ)←g, bk′1 , · · · , bk

′

n ∈ P . Thus, according to the lan-
guage’s semantics we get C ′ = 〈q′, bk′1 · · · bk

′

n , tv
′〉·〈q, q[ȳ/z̄] · bc′′, tv〉·ar ;h where

tv ′ maps every variable to either 0 or null, except for the formal parameters x̄
whose values are obtained from the actual ones w̄. Note that C ′ corresponds
to program point k′:1. In the abstract setting, using 〈φ, θ〉, rule k′ and F#

2

we compute k′:1 7→ 〈φ′, θ′〉. We claim that 〈φ′, θ′〉 correctly approximates C ′.
This is because Condition (2) holds since θ′ = θ and the derivation step does
not modify any field or array; and Condition (1) also holds since all we do is
to copy the values of the access paths of actual parameters from those of the
formal parameters, the rest of local variables are initialized to 0 or Anull for
which Condition (1) trivially holds.

Now we consider the case of a return from a procedure. For this we assume
that C is of the form 〈q, ε, tv〉·〈q′, q[ȳ/z̄] · bc′, tv ′′〉·ar ;h, which according to the
language’s semantics can, in a single step, only lead to C ′ = 〈q′, bc′, tv ′〉·ar ;h
where tv ′ maps all variables as in tv ′′, except for the output variables z̄ for which
we have tv ′(zi) = tv(yi). Now, note that there must be an abstract state C ′′

of the form 〈q′, q(w̄, z̄) · bc′, tv ′′〉·ar ;h′ in Ii from which we have (transitively)
obtained C. Assume that C ′′ corresponds to program point k′:j. Thus, C ′ corre-
sponds to program point k′:j+1. By the induction hypothesis, I#i must include
k′:j 7→ 〈φ′′, θ′′〉 that correctly approximates C ′′. It is easy to see that, using

F#
3 , together with 〈φ, θ〉 and 〈φ′′, θ′′〉, we get k′:j+1 7→ 〈φ′, θ′〉 that correctly

approximates C ′.
We have proved that whenever F (Ii) introduces a state C ′, then F#(I#i ) in-

troduces an abstract state 〈φ′, θ′〉 that correctly approximates C ′. Merging

F#(I#i ) with I#i using tp keeps this approximation correct since the only
changes that can happen are: the access path of a variable x is upgraded to
Aany, or a field or array-type f is removed from θ. In both cases, respectively,
Conditions (1) and (2) still hold.

This concludes the proof for the stand alone case, and next we consider the
modular case.

Let us first note the following immediate consequence of Theorem 1. Assume
that we have analyzed a scope S (that does not call any other scope), and that
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we have obtained the following summary for procedure p:

〈φp, θp〉 = ts{〈φ, θ〉 | p(x̄, ȳ)←g, bk1 , . . . , bkt ∈ P, k:t+1 7→ 〈φ, θ〉}

Now let C ;∗ C ′ where C = 〈q, p(w̄, z̄) · bc, tv〉·ar ;h, C ′ = 〈q, bc, tv ′〉·ar ;h′, and
q (the procedure currently executed in C) is not in the same scope of p, i.e., p is
an external call. Then, clearly, if φp(yi) = A 6= Aany, we have tv ′(zi) = JAK(C).

Now let us change the definition of F (X) in order to collect the reachable
states that correspond to program points in a given scope only. This can be
done by changing F such that when C = 〈q, p(w̄, z̄) · bc, tv〉 · ar ;h and p is
external, then instead of making a single derivation step we use C ;∗ C ′ where
C ′ = 〈q, bc, tv ′〉 · ar ;h′, i.e., we execute p completely.

Now we claim that Theorem 1 still holds when applied to a given scope S.
The proof is the same as for the standalone scope, however, we should extend
it to handle calls to external procedures.

Assuming the C corresponds to program point k:j, and that k:j 7→ 〈φ, θ〉 ∈
I#i correctly approximates C, we show that 〈φ′, θ′〉 = τ(p(w̄, z̄), 〈φ, θ〉) correctly
approximates C ′. Clearly Condition (2) holds since θ′ = θ ∩ θp. Condition (1)
clearly holds for any variable not in z̄. Next, we prove that it holds also for
those variables in z̄.

Applying the definition of τ for external calls, we get that each φ′(zi) equals
to ren(φp(yi), φ, θ). According to the definition of ren, if φp(yi) includes a field
or array-array type f 6∈ θ we get φ′(zi) = Aany, so for such case Condition (1)
trivially holds. Assume that there is no such f , i.e., we are in the else branch
of ren. In such case, if φp(yi) = Aany, or it includes lj such that φ(wj) is Aany,
then φ′(zi) = Aany, so for this case too Condition (1) trivially holds. Now,
assume this is not the case, then, φ′(zi) = A′ where A′ is obtained from φp(yi)
by replacing each lj by φ(wn). We prove that tv(zi) = JA′K(C0): As we have
commented above (at the beginning of the proof of the modular analysis) we
have tv(zi) = Jφp(yi)K(C). Now when evaluating Jφp(yi)K(C), we reach base-
cases in which we need to evaluate JljK(C), which is equal to tv(xi), and by the
induction hypothesis it is equal to Jφ(xj)K(C0). Thus, Jφp(yi)K(C) is equal to
JAK(C0).

Appendix A.2. Proof of Theorem 2

The correctness of this Theorem is straightforward given (1) the correctness
of the access path analysis; and (2) the definition of locality partitions. We
explain this below.

Let us first assume a single locality partition Pϕ1

f1
=〈G1, . . . , Gn〉. Being a

locality partition, as in Definition 5, in any execution that starts from a state
C0, in which ϕ1 holds, the following is guaranteed:

1. The access paths in G1, . . . , Gn refer to different heap locations;

2. We can identify all statically heap accesses instructions in the program
(either read or write) that refer to each heap location induced by each Gi;
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3. A heap access instruction that accesses the heap location induced by Gi,
will always access this specific location during the execution. It is not pos-
sible that it accesses a different location. This is guaranteed by Condition
3 of Definition 5.

The above points basically state that each heap location induced by Gi can
be tracked, i.e., we can statically identify all heap access instructions in the
program that read or modify it. This in turn means that we can simulate this
specific location with a global variable gi as follows:

1. We set the initial value of gi to the value of the corresponding location in
C0; and

2. Any instruction that refers to that heap location is changed to refer to gi.

Moreover, since every heap access in the program is associated, if any, with a
single Gi, we can do the above transformation simultaneously for 〈G1, . . . , Gn〉.
This is exactly what we do in Definition 6. The variables 〈g1, . . . , gn〉 are basi-
cally global variables since the are added as input and output to all rules.

Given the above, the case of several locality partitions Pϕ1

f1
, . . . ,Pϕk

fk
becomes

straightforward. The fact that each f1, . . . , fn refers to different array (static)
type or field signature guarantees that they cannot refer to a common heap
location. Thus, the above transformation can be safely applied simultaneously
for all partitions.
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