
A Practical Comparator of Cost Functions
and its Applications I

Elvira Alberta, Puri Arenasa, Samir Genaima, Germán Pueblab

aDSIC, Complutense University of Madrid (UCM), Spain
bDLSIIS, Technical University of Madrid (UPM), Spain

Abstract

Automatic cost analysis has significantly advanced in the last few years. Nowa-
days, a number of cost analyzers exist which automatically produce upper-
and/or lower-bounds on the amount of resources required to execute a program.
Cost analysis has a number of important applications such as resource-usage ver-
ification and program synthesis and optimization. For such applications to be
successful, it is not sufficient to have automatic cost analysis. It is also required
to have automated means for handling the analysis results, which are in the form
of Cost Functions (CFs for short) i.e., non-recursive expressions composed of
a relatively small number of types of basic expressions. In particular, we need
automated means for comparing CFs in order to prove that a CF is smaller
than or equal to another one for all input values of interest. General function
comparison is a hard mathematical problem. Rather than attacking the general
problem, in this work we focus on comparing CFs by exploiting their syntactic
properties and we present, to the best of our knowledge, the first practical CF
comparator which opens the door to fully automated applications of cost anal-
ysis. We have implemented the comparator and made its source code available
online, so that any cost analyzer can use it.

Keywords: Resource analysis, cost analysis, function comparison,
upper/lower bounds

1. Introduction

Cost analysis [28, 12], a.k.a. resource analysis, aims at statically predicting
the resource consumption of programs in terms of their input data sizes. Given
a program, cost analysis produces a Cost Function (CF for short) which may
correspond to an upper-bound or a lower-bound, depending on the kind of

IThis work was funded partially by the EU project FP7-ICT-610582 ENVISAGE: Engi-
neering Virtualized Services (http://www.envisage-project.eu) and by the Spanish projects
TIN2008-05624 and TIN2012-38137.

Email addresses: elvira@sip.ucm.es (Elvira Albert), puri@sip.ucm.es (Puri Arenas),
samir.genaim@fdi.ucm.es (Samir Genaim), german@fi.upm.es (Germán Puebla)

Preprint submitted to Science of Computer Programming December 27, 2014



analysis performed. For instance, upper bounds are required to ensure that
a program can run within the resources available; lower bounds are useful for
scheduling distributed computations. Starting from the seminal cost analysis
framework by Wegbreit [28], cost analyzers are often generic on the notion of
cost model, e.g., they can be used to measure different resources, such as the
number of instructions executed, the amount of memory allocated, the number
of calls to a certain method, etc. Thus, CFs can be used to represent the usage
of any of such resources.

In all applications of resource analysis, such as resource-usage verification,
program synthesis and optimization, etc., it is necessary to compare CFs. This
allows choosing an implementation with smaller cost or guaranteeing that the
given resource-usage bounds are preserved. Essentially, given a program m, a
set of linear constraints ϕ which impose size restrictions on the input values
to m (e.g., that an argument is larger than a certain value or that the size of
an array is non-zero), and a CF fϕm, we aim at comparing it with another CF
bound b. Depending on the application, such functions can be automatically
inferred by a resource analyzer (e.g., if we want to compare the efficiency of two
implementations) or one of them can be user-defined (e.g., in resource usage
verification one tries to verify, i.e., prove or disprove, assertions written by the
user about the efficiency of the program).

From a mathematical perspective, the problem of cost function comparison
is analogous to the problem of proving that the difference of both functions is
a positive function, e.g., b − fϕm ≥ 0 in the context ϕ. This is in general un-
decidable1 and also non-trivial, as CFs involve non-linear subexpressions (e.g.,
exponential, polynomial and logarithmic subexpressions).

1.1. Summary of Contributions

As our first main contribution, we present a practical approach to the com-
parison of cost functions. We take advantage of the form that cost functions
originating from the analysis of programs have and of the fact that they evalu-
ate to non-negative values. Essentially, our technique consists of the following
steps, which constitute our main technical contributions:

1. Normalizing cost functions to a form which makes them amenable to be
syntactically compared. This step includes handling operators like max
and min (used to express the maximum and minimum of a set of expres-
sions), and transforming arithmetic expressions into sums of products of
basic cost expressions.

2. Defining a series of comparison rules for basic cost expressions and their
(approximated) differences, which then allow us to compare two products.

1Since variables range over the integers, undecidability follows from the undecidability of
that of Hilbert’s 10th problem: given a multivariate polynomial p(x̄), decide whether p(x̄) = 0
has an integer solution. This problem can be reduced to checking whether p(x̄)2 is positive,
which is an instance of comparing cost functions.

2



3. Providing sufficient conditions for comparing two sums of products by
relying on the product comparison, and enhancing it with a composite
comparison schema which establishes when a product is larger than a sum
of products.

The second main contribution is an implementation of the cost comparator
that we have made available online at costa.ls.fi.upm.es/comparator to
the resource analysis community and which is free software under the General
Public License (GPL). We define there the syntax of the cost functions used in
the implementation, and provide specifications of its interface functions, so that
our comparator can be easily integrated in any resource analyzer.

A preliminary version of this work was presented at FOPARA’09 [3]. This
article improves [3] in several aspects: (1) it notably improves the formalization
of the comparison process, (2) it formally proves the correctness of the approach,
(3) it extends the method to also handle lower bounds, (4) we present applica-
tions (including new ones) of the comparator, and (5) finally we provide a new
implementation of our approach.

1.2. Organization of the Article

The rest of the paper is organized as follows. The next section introduces
some background in cost analysis and cost functions and presents the syntax of
the cost expressions (CEs for short) which we handle in this paper. Section 3
presents the problem of comparing two CFs in a context provided by means of
constraints. In order to come up with practical ways to solve the problem, we
propose means for handling the nat-, max- and min-operators and transform the
comparison problem to that of comparing a series of expressions which no longer
contain such operators. In Section 4, we introduce a novel approach to prov-
ing that a CF is smaller than another one. Our approach is based on a series
of syntactic schemes which provide sufficient conditions to syntactically detect
that a given expression is smaller than or equal to another one. The comparison
is presented as a fixed point transformation in which we remove from CEs those
subexpressions for which the comparison has already been proven until the left
hand side expression becomes zero. Section 5 discusses several applications of
our CFs comparator, namely its direct use to check the efficiency improvement
of program optimizations, and for program verification and certification. Inter-
estingly, in cases in which an upper bound cannot be found (for instance because
the analyzer does not find an upper bound on the number of loop iterations),
our comparator can be used to check that the resource consumption is below a
given threshold. An overview of other approaches and related work is presented
in Section 6 and some conclusions are presented in Section 7.

2. Background on Cost Analysis

This section introduces some background material on cost analysis and
presents the syntax of the CEs studied in the paper. We start by introduc-
ing some notation. The sets of natural, integer and non-zero natural values

3



are denoted by N, Z and N+, respectively. We write x, y, and z, to denote
variables which range over Z. The notation t̄ stands for a sequence t1, . . . , tn,
for some n>0. A linear expression over a sequence of variables x̄ is of the form
v0 + v1x1 + . . . + vnxn, where vi ∈ Z, 0 ≤ i ≤ n and xi ∈ x̄ for all 1 ≤ i ≤ n.
Similarly, a linear constraint (over Z) has the form l1 ≤ l2, where l1 and l2 are
linear expressions. For simplicity we write l1 = l2 instead of l1 ≤ l2 ∧ l2 ≤ l1,
and l1 < l2 instead of l1 +1 ≤ l2. Note that constraints with rational coefficients
can be always transformed into equivalent constraints with integer coefficients,
e.g., 1

2x > y is equivalent to x > 2y. Given any entity t, vars(t) stands for the
set of variables in t. We write ϕ to denote sets of linear constraints which should
be interpreted as the conjunction of each element in the set. An assignment σ
over a tuple of variables x̄ is a mapping from x̄ to Z. We write σ |= ϕ to denote
that σ(ϕ) takes the value true, and we say that ϕ is satisfiable if there exists an
assignment σ such that σ |= ϕ.

2.1. Cost Functions

As already mentioned, cost analysis produces its results in terms of cost
functions, which are functions of the type Zn 7→ N, where each input value
to the cost function corresponds to an input value to the original program.
However, whereas programs can have input arguments of many different types,
cost functions are restricted to integer inputs. For this to be possible, input
arguments which are not of type integer have to be abstracted to their size.
Different size measures may be used for the same input type. Therefore, the
analysis results, in order to be understandable, have to be accompanied by the
size measure which has been applied to each argument.

It is customary to analyze programs (or methods) w.r.t. some initial context
constraint. Essentially, given a method m(x̄), the considered context constraint
ϕ describes conditions on the sizes of the initial values of x̄. With such infor-
mation, a cost analyzer outputs a cost function fϕm(x̄s) = e, where e is a cost
expression and x̄s denotes the data sizes of x̄. Thus, fϕm is a function of the
input data sizes that provides information on the resource consumption of exe-
cuting m for any concrete value of the input data x̄ such that their sizes satisfy
ϕ. Note that ϕ is basically a set of linear constraints over x̄s. For simplicity, in
the rest of the paper we simply write x̄ instead of x̄s to refer to the input values
to a cost function. Let us see an example.

Example 1. Figure 1 shows a Java program which we use as running example.
It is interesting because it shows the different complexity orders that can be ob-
tained by a cost analyzer. We analyze this program using the COSTA system [6],
and selecting the number of executed bytecode instructions as cost model. Each
Java instruction is compiled to possibly several corresponding bytecode instruc-
tions but, since this is not a concern of this paper, we will skip explanations
about the constants in the upper bound function and refer to [5] for details.

Given the context constraint {n > 0}, the analyzer outputs the upper bound
cost function for the method m which is shown at the bottom of the figure. Since
m contains two recursive calls, the complexity is exponential in n, namely we

4



void m(int n, int a, int b) {
if (n > 0) {

m(n - 1, a, b);
m(n - 2, a, b);
f(a, b, n);
}
}

void f(int a, int b, int n) {
int acc = 0;
if (n % 2 == 0)

while (n > 0) {
n = n/2; acc++;
}

else
for (int i = 0; i < a; i++)

for (int j = 0; j < b; j++) acc++;
}

Upper Bound Cost Function for m(n, a, b):

2nat(n)∗(31+max{8∗ log2(nat(2∗n−1)+1)︸ ︷︷ ︸
while loop

, 3+nat(a)∗(10+6∗nat(b))︸ ︷︷ ︸
for loop

})

︸ ︷︷ ︸
cost of f︸ ︷︷ ︸

cost of recursive calls

+ 9∗2nat(n)︸ ︷︷ ︸
base cases

Figure 1: Running example and upper bound on the number of executed bytecode instructions.

have a factor 2nat(n). At each recursive call, the method f is invoked and its cost
(plus a constant value) is multiplied by 2nat(n). In the code of f, we can observe
how a conditional statement introduces a max-operator in the upper bound. The
then branch executes the while loop, which has a logarithmic complexity because
the loop counter is divided by 2 at each iteration. The else branch executes the
for loop, which has a quadratic complexity since it contains a nested for loop.
Finally, the cost introduced by the base cases of m is exponential since, due
to the double recursion, there is an exponential number of computations which
correspond to base cases. Each such computation requires a maximum of 9
instructions.

Note that all expressions involving variables are wrapped by nat in order to
capture that the corresponding cost becomes zero when the expression inside the
nat takes a negative value. In the case of nat(n), the nat is redundant since
due to the context constraint we know that n > 0. However, the nat is required
for variables a and b since, when they take a negative value, the corresponding
loops are not executed and thus their costs have to become zero in the formula.
Essentially, the use of nat allows having a compact cost function instead of one
defined by multiple cases. We prefer to keep the max-operator separate from
the nat-operator since nat is just a special case of max, and thus treating them
separately will simplify their handling later.

2.2. Cost Expressions

The following definition presents our notion of cost expression, which char-
acterizes syntactically the kind of functions we deal with.

5



Definition 1 (cost expression). Given a sequence of variables x̄, a cost ex-
pression (CE) for x̄ is a symbolic expression generated using the grammar:

e::= n | nat(l) | e+ e | e ∗ e | loga(nat(l) + 1) | nat(l)n | anat(l) | max(S)

where n, a ∈ N+, a ≥ 2, l is a linear expression over x̄, S is a non-empty set of
CEs, and nat : Z → N is defined as nat(v)=max({v, 0}). Given an assignment
σ over x̄ and a cost expression e, σ(e) is the natural number which results from
the evaluation of e w.r.t. σ. In the case of loga(e), it should be interpreted as
bloga(e)c, since CEs must be evaluable to natural numbers.

As already mentioned in Example 1 above, linear expressions are wrapped by
nat, which stands for natural value. Logarithmic expressions contain a linear
subexpression plus “1”, which ensures that they cannot be evaluated to loga(0).
Also, max-subexpressions are used to represent the cost of disjunctive branches
in the program, as seen in the running example.

From now on, we assume that the right hand side of a cost function for a
method m(x̄) is a cost expression over x̄. This guarantees that CEs become fully
evaluable to a natural number for any assignment over x̄. If we ignore syntactic
differences, one can say that cost analyzers produce cost functions which adhere
to the syntax of CEs presented above.

3. Comparing Cost Functions containing nat- and max-Operators

We now study the problem of comparing two CFs over the same sequence
of variables x̄ which adhere to the syntax provided in Definition 1 above in
the context of a set of constraints ϕ over x̄. While the CEs syntax provides a
compact format and it is good for human comprehension, the use of the nat- and
max-operators poses important problems for comparing CFs. We now propose
a syntactic transformation which converts cost functions represented using the
syntax provided in Definition 1 into another syntax in which no max- nor nat-
expressions are needed, which simplifies the task of automatically comparing
pairs of CFs.

Definition 2 corresponds to the intuition of the condition under which a CF
is smaller than another one within a certain context.

Definition 2 (smaller cost function in context). Let f1 and f2 be two CFs
over the sequence of variables x̄. Let ϕ be a context constraint. We say that f1

is smaller than f2 in the context ϕ, denoted f1 ≤ϕ f2 iff for all assignments σ
over x̄ s.t. σ |= ϕ we have that σ(f1) ≤ σ(f2).

The problem with this definition is that it cannot be applied directly in general
because it would require evaluating the cost functions for all possible input
values, which is an (infinitely) large set. As a result, we will try to provide
other ways of statically proving that a CF is smaller than another one.

The transformation we propose is performed in two steps. In the first one we
study how to handle nat-operators. In the second one we propose a mechanism
for eliminating max-operators.

6



3.1. Eliminating nat-Operators

An important observation is that nat-expressions are in general not statically
evaluable, i.e., we cannot evaluate them without knowing the values of the input
variables to the cost function. However, an expression of the form nat(l) becomes
statically evaluable if the context constraint ϕ considered guarantees that either
l ≤ 0, in which case the whole expression takes the value zero, or that l >
0, in which case the nat-wrapper can be removed. Therefore, if the context
constraint allows it, cost expressions can be statically evaluated into nat-free
cost expressions, whose syntax is presented below.

Definition 3 (nat-free cost expression). Given a sequence of variables x̄ and
a context ϕ, a nat-free cost expression for x̄ and ϕ is a symbolic expression which
adheres to the grammar:

e::= n | A | e+ e | e ∗ e | loga(A+ 1) | An | aA | max(S)

where n and a are defined as in Definition 1 and A is a bounded integer variable,
i.e., the context ϕ must (1) contain a constraint of the form A = l with l a linear
expression over x̄ and (2) ϕ |= A > 0.

nat-free cost expressions are simpler than regular cost expressions in that they
no longer contain nat-operators, however they may contain bound variables.
Note that ϕ has to satisfy two properties: (1) guarantees that the value of A is
fixed for any assignment over x̄ and (2) guarantees that nat-free cost expressions
do not take negative values.

The main idea in order to convert a regular cost expression containing a
subexpression of the form nat(l) into a pair of nat-free cost expressions is that
if the context constraint ϕ does not entail l ≤ 0 nor l > 0, we can always split
the context ϕ into two cases, ϕ1 = ϕ ∪ {l ≤ 0}, where l ≤ 0 trivially holds,
and ϕ2 = ϕ ∪ {l > 0}, where l > 0 trivially holds. If we succeed to prove any
property in both ϕ1 and ϕ2 separately, then the property holds for the initial ϕ
context constraint. In order to be able to have a representation of CFs without
nat-subexpressions, we will use functions defined by cases.

Definition 4 (nat-free cost function). A nat-free cost function f over vari-
ables x̄ is of the form {〈e1, ϕ1〉, . . . , 〈en, ϕn〉}, with n ≥ 1 and where each ei is
a nat-free cost expression for x̄ and ϕi. It should be interpreted as:

f(x̄) =


e1 ϕ1

...
...

en ϕn

The ϕi constraints indicate the conditions under which the CF takes the value
ei. All CFs defined by cases have to satisfy that the constraints in different cases
are mutually exclusive and that the union of all constraints cover all possible
input values, i.e., for any input value there is exactly one case whose constraint
is satisfied.

7



The process of converting a cost function represented by a CE e into a nat-
free cost function can be conceptually split in two steps. In the first step we
collect all linear expressions which appear inside nat-operators and we obtain a
partition of the initial context constraint into a set of contexts which guarantee
that all nat-expressions in e are statically evaluable. Then, in the second step
we obtain the simplified version of e which can be considered in each case by
statically evaluating all nat-operators as discussed above. We now present a
function which computes a set of contexts where all considered nat-expressions
are evaluable. We use CE to denote the set of all possible cost expressions,
L to denote the set of all linear expressions and Φ to denote the set of all
possible contexts. Also, given a cost expression e, we denote by nats(e) the set
{l | nat(l) occurs in e}.

Definition 5 (nat-evaluable contexts). Let e be a CE and ϕ a satisfiable
context constraint. We define the natContexts function natContexts: CE × Φ 7→
2Φ as natContexts(e, ϕ) = τnat(nats(e), {ϕ}) where τnat : 2L×2Φ 7→ 2Φ is defined
as:

τnat(L,C) =

{
C L = ∅
τnat(L− {l}, {ϕ′ ∈ split(C, l) | ϕ′ is satisfiable}) l ∈ L

where L is a set of linear expressions, C is a set of context constraints, and
split(C, l) = {ϕ′′ ∪ {l ≤ 0} | ϕ′′ ∈ C} ∪ {ϕ′′ ∪ {l > 0} | ϕ′′ ∈ C}.

Note that the τnat function is recursive and it calls itself as many times as
required until we obtain sufficiently many contexts for all nat-expressions to be
statically evaluable. In each iteration, the split function potentially duplicates
the number of contexts. However, some of the generated contexts by split are
inconsistent (they contain incompatible constraints) and they are pruned away
when calling τnat recursively.

The second argument to the natContexts function should correspond to the
context ϕ in which the comparison of cost expressions will take place. The
advantage of doing so is that we can prune away as soon as possible those cases
which are incompatible with ϕ.

Example 2. Let us consider the CE e = nat(x)∗nat(z−1) whose behaviour we
want to study under the context constraint {x > 0}. First we apply τnat on
the set of nat-subexpressions nats(e) = {x, z−1} in e. In the first iteration
of τnat({x, z−1}, {{x > 0}}), we need to compute split({{x > 0}}, x), which
returns {{x > 0, x ≤ 0}, {x > 0, x > 0}} as result. Since {x > 0, x ≤ 0} is
not satisfiable, the recursive call to τnat takes the form τnat({z−1}, {{x > 0}}).
Now, since split({{x > 0}}, z−1) = {ϕ1, ϕ2}, where ϕ1 = {x > 0, z−1 ≤ 0} and
ϕ2 = {x > 0, z−1 > 0} are both satisfiable, the new iteration of τnat({}, {ϕ1, ϕ2})
returns {ϕ1, ϕ2}, i.e., natContexts(e, {x > 0}) returns {ϕ1, ϕ2}.

Let us consider now both cost expressions:

e1 = 2nat(n)∗(31+8∗ log2(nat(2∗n−1)+1))+9∗2nat(n)

e2 = 2nat(n)∗(3+nat(a)∗(10+6∗nat(b)))+9∗2nat(n)

8



coming from the upper bound cost function m(n, a, b) in Fig. 1 together with the
context constraint {n > 0}. Let us focus on e1, where nats(e1)={n, 2∗n−1}.
It holds that natContexts(e1, {n > 0})=τnat({n, 2∗n−1}, {{n > 0}}) = {ϕ11},
where ϕ11={n > 0, 2∗n−1 > 0}. Similarly, let us consider e2. This time,
nats(e2)={n, a, b}, and natContexts(e2, {n > 0})=τnat({n, a, b}, {{n > 0}})=
{ϕ21, ϕ22, ϕ23, ϕ24}, where:

ϕ21 = {n > 0, a ≤ 0, b ≤ 0} ϕ22 = {n > 0, a ≤ 0, b > 0}
ϕ23 = {n > 0, a > 0, b ≤ 0} ϕ24 = {n > 0, a > 0, b > 0}

We now define a function which statically evaluates cost expressions in con-
texts where all nat-expressions are evaluable. As notation, we use capital letters
to denote fresh integer variables which replace the nat-subexpressions. We write
e[a 7→ b] to denote the expression obtained from e by replacing all occurrences
of subexpression a in e with b.

Definition 6 (nat-evaluation). Let e be a cost expression. Let ϕ be a satisfi-
able context constraint. The nat-evaluation of e w.r.t. ϕ, denoted e ↓ϕ is defined
as

e ↓ϕ=



〈e′ ↓ϕ, ϕ〉, nat(l) ∈ e ∧ ϕ |= l ≤ 0

where e′ = e[nat(l) 7→ 0]

〈e′ ↓ϕ, ϕ′〉, nat(l) ∈ e ∧ ϕ |= l > 0

where e′ = e[nat(l) 7→ A]∧
ϕ′ = ϕ ∪ {A = l}

〈e, ϕ〉 otherwise

where A stands for a fresh integer variable.

Note that nat-evaluation not only removes nat-wrappers. Those linear expres-
sions which are guaranteed to take positive values are replaced with a distinct
fresh variable. The relation between the original linear expression l and the new
variable is kept by adding a new equality constraint to the context constraint
which binds the new variable A to the corresponding linear expression l. This
is why we refer to A as a bounded variable.

Note that the use of bounded variables to replace nat-expressions is required
to preserve the syntax of cost expressions in Definition 1, and more concretely
the syntax of nat-free cost expressions in Definition 3. For instance, if we con-
sider the cost expression e = 1+nat(x−y), and we transform it without using
bounded variables, we would obtain 〈1+(x−y), {x−y > 0}〉 and 〈1, {x−y ≤ 0〉},
where 1 + (x− y) is not a cost expression. However, by using bounded variables
we generate 〈1 +A, {A = x−y, x−y > 0}〉 and 〈1, {x−y ≤ 0}〉, where 1 +A is in
fact a nat-free cost expression. It is important to note that these new equality
constraints involving bounded variables are added only to preserve the syntactic
structure of cost expressions, but they do not affect the set of input values for
which the context constraint is satisfied.

9



Example 3. Let us consider the CEs e, e1, e2 and the context constraints ϕi,
ϕ2j, 1 ≤ i ≤ 2, 1 ≤ j ≤ 4 in Example 2. Then, the result of evaluating the
CE e in the contexts ϕ1, ϕ2 is e ↓ϕ1

= 〈x∗0, ϕ1〉, e ↓ϕ2
= 〈x∗A,ϕ2 ∪ {A=z−1}〉

respectively. Similarly, it holds:

(1) e1 ↓ϕ11 = 〈2A∗(31+8∗ log2(B+1))+9∗2A, ϕ11 ∪ {A=n,B=2∗n−1}〉
(2) e2 ↓ϕ21

= 〈2A∗3+9∗2A, ϕ21 ∪ {A=n}〉
(3) e2 ↓ϕ22 = 〈2A∗3+9∗2A, ϕ22 ∪ {A=n,C=b}〉
(4) e2 ↓ϕ23

= 〈2A∗(3+B∗10)+9∗2A, ϕ23 ∪ {A=n,B=a}〉
(5) e2 ↓ϕ24

= 〈2A∗(3+B∗(10+6∗C))+9∗2A, ϕ24 ∪ {A=n,B=a,C=b}〉

We now provide a definition which shows the process of comparing two
cost functions defined by cases. This is done by comparing them in a set of
contexts where the nat-operators are statically evaluable. Also, in the following
definition, (e1, e2) ↓ϕ indicates that we perform nat-evaluation of e1 and e2

simultaneously. This guarantees that if the same linear expression occurs in
both e1 and e2 within nat-operators, the same bound integer variable is used in
both CEs.

Definition 7 (smaller cost expression in nat-evaluable contexts). Let e1

and e2 be two CEs. Let ϕ be a satisfiable context constraint. We say that
e1 is smaller in nat-evaluable contexts than e2 in ϕ, denoted e1 �ϕ e2 iff
∀ϕ′ ∈ natContexts(e1 + e2, ϕ) it holds that e′1 ≤ϕ′′ e′2, where (e1, e2) ↓ϕ′=
〈(e′1, e′2), ϕ′′〉.

Definition 7 above allows statically reducing the general comparison problem
into a set of smaller subproblems which cover the initial one. In the call to
natContexts we use the addition operator ’+’ to build a single cost expression
from e1 and e2. This way, identical linear expressions are replaced with the
same bounded variable in both e1 and e2.

Theorem 1 (Correctness of comparison of CEs defined by cases). Let e1

and e2 be two CEs. Let ϕ be a satisfiable context constraint. Then e1 �ϕ e2 iff
e1 ≤ϕ e2.

Proof. We prove both implications:

(⇒). Suppose that e1 �ϕ e2. We want to prove that e1 ≤ϕ e2, i.e., for all
assignments σ such that σ |= ϕ, it holds that σ(e1) ≤ σ(e2). Since τnat(nats(e1 +
e2 ), {ϕ}) covers all possible input values and all constraints in it are mutually
exclusive, for any assignment σ |= ϕ there exists a context ϕ1 ∈ τnat(nats(e1 +
e2 ), {ϕ}) such that σ |= ϕ1, where by construction, ϕ1 = ϕ ∪ ϕa, for some ϕa.
Then (e1, e2) ↓ϕ1

= 〈(e′1, e′2), ϕ′1〉, and ϕ′1 = ϕ ∪ ϕa ∪ ϕb for some ϕb, where ϕb

contains elements of the form A = l, where A is a fresh variable and nat(l) occurs
either in e1 or e2. Let us define σ′ as σ plus the assignments σ′(A) = l, for all
A = l in ϕb. It holds σ′ |= ϕ′1 and thus σ′(e′1) ≤ σ′(e′2). Then, by construction
together with the definition of σ′, it holds σ′(e′1) = σ(e1) and σ′(e′2) = σ(e2).
Hence e1 ≤ϕ e2.

10



(⇐). We want to prove that e1 �ϕ e2. Let us consider ϕ1 ∈ τnat(nats(e1 +
e2 ), {ϕ}). Then by construction ϕ1 = ϕ ∪ ϕa, for some ϕa. Now we compute
(e1, e2) ↓ϕ1

= 〈(e′1, e′2), ϕ′1〉, where ϕ′1 = ϕ ∪ ϕa ∪ ϕb for some ϕb , where ϕb

contains constraints of the form A = l, where A is a fresh variable and nat(l)
occurs either in e1 or e2. We need to prove then that e′1 ≤ϕ′

1
e′2. Let us choose

any assignment σ such that σ |= ϕ′1. Then σ |= ϕ. Thus since e1 ≤ϕ e2 it holds
that σ(e1) ≤ σ(e2). Then, because of the structure of ϕb together with σ |= ϕb,
it holds that σ(e1) = σ(e′1) and σ(e2) = σ(e′2). Hence σ(e′1) ≤ σ(e′2). 2

This theorem guarantees that it is correct to split the initial problem into
smaller problems where no nat-operators appear anymore. The following section
tells us a possible mechanism for comparing functions which potentially contain
max-operators.

3.2. Eliminating max-Operators

Intuitively, a max-operator is a shortcut for allowing the use of multiple CFs
instead of a single one. When evaluating a CF with max-operators, the CF
with the larger value is taken. Note that max-operators are required when an
analyzer is not able to determine which of several alternative cost expressions is
larger. As an example, in method m in the running example, a max-operator is
required because the cost of the then branch and that of the else branch depend
on different input values, n for the then branch and a and b for the else branch.
Therefore, neither of the branches is larger than the other for all input values.

Since all subexpressions in cost expressions are positive, it is always possible
to convert an expression with a max-operator in an inner level into an equivalent
one which has the max-operator at the outermost level. Therefore, from now
on, cost expressions are represented as sets of cost expressions which contain
no max-operators, since they all have been moved to the outermost level. The
following definition transforms an initially singleton set of CFs into a set of
max-free CFs which cover all possible costs comprised in the original function.
We use CF to denote the set of all possible cost functions, and we say that a
set M of CFs is max-free if no cost function in M contains a max-operator.

Definition 8 (max-free function). Let e be a CF . We define the maxFree
function maxFree : CF 7→ 2CF as maxFree(e) = τmax({e}), where τmax : 2CF 7→
2CF is defined as:

τmax(M) =

 M M is max-free
τmax((M − {e}) ∪M ′) e ∈M , e contains max(S)

M ′ = {e′ | e′=e[max(S) 7→ e′′], e′′∈S}

In the above definition, each application of τmax takes care of taking out one
expression e from M containing a max(S) subexpression by replacing e with
as many cost expressions as elements in the set S. This process is iteratively
repeated until there are no more max-subexpressions to be transformed. The re-
sult of this operation is a max-free CF . A similar treatment of max-expressions,
for case analysis, appeared in [16].

11



Example 4. Let us consider the cost expression e=1+max({nat(x),max({nat(y),
nat(z+1)})}). To compute maxFree(e) we start by applying τmax to the single-
ton set {e}. Suppose that we remove the outermost max first. Then we obtain
the set {1+nat(x), 1+max({nat(y), nat(z+1)})}. Now we apply τmax again on
{1+nat(x), 1+max({nat(y), nat(z+1)})} to obtain the set {1+nat(x), 1+nat(y),
1+nat(z+1)}. Since this set no longer contains any max-subexpression, then
maxFree(e) = {1+nat(x), 1+nat(y), 1+nat(z+1)}.

Similarly, for the cost expression m(n, a, b) in Fig. 1, maxFree(m(n, a, b))
returns the set {e1, e2} by applying one iteration of τmax({m(n, a, b)}), where e1

and e2 are the cost expressions in Example 2.

Definition 9 (Smaller CE containing max-operators). Let e1 and e2 be two
CEs and ϕ be a satisfiable context constraint. We say that e1 is smaller than
e2 in max-free format, denoted as e1Eϕe2, iff for all e ∈ maxFree(e1), exists
e′ ∈ maxFree(e2) s.t. e �ϕ e

′.

Note that the order in which we remove max- and nat-operators is irrelevant. In
fact, the definition above can be applied to cost expressions with nat-operators,
since the e �ϕ e

′ relation can handle nat-operators if needed. Finally, the theo-
rem below guarantees that the proposed mechanism for handling max-operators
is correct.

Theorem 2 (Correctness of comparison of CEs with max-operators). Let
e1 and e2 be two CEs. Let ϕ be a satisfiable context. Then e1Eϕe2 iff e1 ≤ϕ e2.

Proof. We prove both implications.

(⇒). Let σ be an assignment such that σ |= ϕ. Because of the definition of
maxFree(e1) which generates all possible expressions subsumed in e1, it holds
that σ(e1) = σ(e′), for some e′ ∈ maxFree(e1). Since e1Eϕe2, then there exists
e′′ ∈ maxFree(e2) such that e′ �ϕ e′′. Let us consider the set Max = {e ∈
maxFree(e2) | e′ �ϕ e} which is different from the empty set since e′′ belongs to
it. We distinguish two cases.

(a) There exists e ∈ Max such that σ(e) = e2. Then σ(e1) = σ(e′) ≤ σ(e) =
σ(e2). Hence e1 ≤ϕ e2 and the result holds.

(b) Otherwise, because of the definition of max-operators, there exists e ∈
maxFree(e2) such that σ(e) = σ(e2). Note that the evaluation of max-
operators ensures that σ(e2) ≥ σ(e′′′), for all e′′′ ∈ maxFree(e2). Then
σ(e) ∈ Max and the result can be proven as in item (a).

(⇐). Suppose that e1 ≤ϕ e2, i.e., for all σ |= ϕ it holds σ(e1) ≤ σ(e2). Let
us consider any e ∈ maxFree(e1). By definition of maxFree(e1) it holds that
σ(e) ≤ϕ σ(e1) ≤ϕ σ(e2). Again, the construction of maxFree(e2) ensures that
there exists e′ ∈ maxFree(e2) such that σ(e2) = σ(e′). Hence e �ϕ e

′ and thus
e1Eϕe2. 2

12



Note that we have provided mechanisms for getting rid of both nat- and max-
operators from cost expressions. The cost expressions we obtain after removing
such operators are referred to as flat cost expressions and their syntax is defined
below.

Definition 10 (flat cost expression). Given a sequence of variables x̄ and
a context ϕ, a flat cost expression for x̄ and ϕ is a symbolic expression which
adheres to this grammar:

e::= n | A | e+ e | e ∗ e | loga(A+ 1) | An | aA

where n, a ∈ N+, a ≥ 2 and A is an integer variable bound in ϕ.

3.3. Eliminating min-Operators

As already discussed, for some applications of cost analysis it is interesting
to compute lower-bounds (which correspond to the best-case cost) rather than
upper-bounds (which correspond to worst-case cost). For example, lower bounds
are used for scheduling the distribution of tasks in parallel execution in such a
way that it is not worth parallelizing a task unless its (lower-bound) resource
consumption is sufficiently large (see, e.g., [9, 15]).

When CFs correspond to lower-bounds they use the min-operator instead
of max, i.e., cost expressions are like those defined in Definition 1 but replacing
max(S) by min(S). Essentially, the min-operator is used when there are multiple
choices and we want to denote the minimum cost for them. For instance, the
lower bound cost for an if-then-else instruction is expressed as the minimum of
the costs of the then and else branches. Our comparator can also handle the
comparison of lower bound functions. As in the case of max-operators, min-
operators can also be promoted to the outermost level since we are dealing with
positive subexpressions grouped by addition and multiplication only. Then, in
order to compare two lower bounds e1 and e2, it is enough to replace Definition 9
by the following one.

Definition 11 (Smaller CE containing min-operators). Let e1 and e2 be
two CEs. Let ϕ be a satisfiable context constraint. We say that e1 is smaller
than e2 in min-free format, denoted as e1 �ϕ e2, iff there exists e ∈ minFree(e1)
such that for all e′ ∈ minFree(e2) we have e �ϕ e

′.

Analogously to maxFree, we use minFree to denote the result of the iterative
application of the operator τmin, which is the counterpart of τmax considering
min-expressions instead of max-expressions.

Note that the quantifiers in Definition 11 and Definition 9 are reversed. I.e.,
in Definition 9 we required that for all elements in the set of max-free expressions
for e1 there exists one element in the max-free expressions for e2 which is larger.
In the case of min-operators, we need instead that there exists an element in
the set of min-free expressions for e1 such that all elements in the min-free
expressions for e2 are larger than it.

The theorem below guarantees that the proposed mechanism for handling
min-operators is correct. The proof is analogous to that of Theorem 2.

13



Theorem 3 (Correctness of comparison of CEs with min-operators). Let
e1 and e2 be two CEs. Let ϕ be a satisfiable context constraint. Then e1 �ϕ e2

iff e1 ≤ϕ e2.

4. Comparing Flat Cost Functions

The definitions in the previous section allow handling max- and nat-operators
and reduce the problem of comparing CEs containing them to that of comparing
a series of flat CEs which follow the syntax in Definition 10. In this section, we
aim at defining a practical technique to syntactically check that a flat function
is smaller or equal than another one in a given context constraint ϕ, i.e., the
initial relation ≤ϕ of Definition 2 but this time restricted to flat cost expressions
only.

The way in which we will compare flat CEs consist of two steps. In the first
one we normalize flat CEs by removing additions which appear as arguments to
multiplications, grouping identical terms together, etc. in order to make them
easier to compare. Then, we define a series of inclusion schemes which provide
sufficient conditions to syntactically detect that a given expression is smaller
or equal than another one. An important feature of our approach is that when
expressions are syntactically compared we compute an approximated quotient of
the comparison, which is the subexpression that has not been required in order
to prove the comparison and, thus, can still be used for subsequent comparisons.
The whole comparison is presented as a fixed point transformation in which we
remove from cost expressions those subexpressions for which the comparison
has already been proven, until the left hand side expression becomes zero, in
which case we succeed to prove that it is smaller or equal than the other one,
or no more transformations can be applied, in which case we fail to prove that
it is smaller.

Our approach is sound in the sense that whenever we determine that a CE
is smaller than another one this is actually the case. However, since the prob-
lem is undecidable and the approach is obviously approximate, our approach is
incomplete, as there are cases where a CE is actually smaller than another one,
but we fail to prove so.

4.1. Normalization of Cost Expressions

In the sequel, given a sequence of variables x̄ and a context ϕ, a basic cost
expression b for x̄ and ϕ has the form n, A, loga(A+1), An, al, where n, a ∈ N+,
a ≥ 2, A is an integer variable bound in ϕ and l is a linear expression over the
variables in b.

Basic cost expressions are generated from flat cost expressions, which in fact
come from cost expressions by eliminating nat− and max-operators. Thus, be-
cause of Definition 6, a bound variable A occurring in a flat cost expression
clearly satisfies that ϕ |= A > 0. Furthermore, note that we write al instead of
aA as done in Definition 10. This is because when grouping together subexpres-
sions, we may introduce additions in the exponent. For instance 2A∗2B stands

14



for the basic cost expression 2A+B . Note also that since l is a linear expression
on integer bound variables and it holds that ϕ |= A > 0, for any bound variable
A, then ϕ |= l > 0.

Definition 12 (normalized cost expression). A normalized cost expression
is of the form Σn

i=1ei such that each ei is a product of basic cost expressions.

Any flat cost expression can be normalized by repeatedly applying the distribu-
tive property of multiplication over addition in order to promote to outer levels
any additions which appear as arguments to multiplications. We also assume
that products which are composed of the same basic expressions (modulo con-
stants) are grouped together in a single expression which adds all constants.

Example 5. Let us consider the cost functions (1), . . . , (5) in Example 3. Nor-
malization results in the following cost functions:

(1)n 〈40∗2A+8∗ log2(B+1)∗2A, ϕ11 ∪ {A=n,B=2∗n−1}〉
(2)n 〈12∗2A, ϕ21 ∪ {A=n}〉
(3)n 〈12∗2A, ϕ22 ∪ {A=n,C=b}〉
(4)n 〈12∗2A+10∗2A∗B,ϕ23 ∪ {A=n,B=a}〉
(5)n 〈12∗2A+10∗B∗2A+6∗B∗C∗2A, ϕ24 ∪ {A=n,B=a,C=b}〉

Since e1 ∗ e2 and e2 ∗ e1 are equal, it is convenient to view a product as the set
of its elements (i.e., basic cost expressions). We use Pb to denote the set of all
products (i.e., sets of basic cost expressions) and M to refer to one product in
Pb. Also, sinceM1 +M2 andM2 +M1 are equal, it is convenient to view the
sum of products as the set of its elements (its products). We use PM to denote
the set of all sums of products and S to refer to one sum of products in PM.
Therefore, a normalized cost expression can be represented as a set of sets of
basic cost expressions.

Example 6. For the normalized cost expressions in Example 5, we obtain the
following set representation:

(1)s 〈{{40, 2A}, {8, log2(B+1), 2A}}, ϕ11 ∪ {A=n,B=2∗n−1}〉
(2)s 〈{{12, 2A}}, ϕ21 ∪ {A=n}〉
(3)s 〈{{12, 2A}}, ϕ22 ∪ {A=n,C=b}〉
(4)s 〈{{12, 2A}, {10, 2A, B}}, ϕ23 ∪ {A=n,B=a}〉
(5)s 〈{{12, 2A}, {10, B, 2A}, {6, B,C, 2A}}, ϕ24 ∪ {A=n,B=a,C=b}〉

4.2. Product Comparison

We start by providing sufficient conditions which allow proving the ≤ϕ rela-
tion on the basic cost expressions. They will later be used to compare products
of basic cost expressions. Given two basic cost expressions e1 and e2, the third
column in Table 1 specifies sufficient conditions under which e1 ≤ϕ e2. Since
the sufficient conditions provided in the table are over linear expressions, we
can rely on existing linear constraint solving techniques to automatically prove
them. Note that the linear expressions l1, l2 and l in entries 1, 3, 4 and 5

15



e1 e2 sufficient condition adiv

l1 l2 ϕ |= {l1>0, l1≤l2} 1
n loga(A+1) ϕ |= {an ≤ A+1} 1
l An n > 1 ∧ ϕ |= {l ≤ A} An−1

l nl′ n > 1 ∧ ϕ |= {l ≤ l′} nl′−l

loga(A+1) l ϕ |= {l>0, A+1 ≤ l} 1
loga(A+1) logb(B+1) a ≥ b ∧ ϕ |= {A ≤ B} 1
loga(A+1) Bn n > 1 ∧ ϕ |= {A+1 ≤ B} Bn−1

loga(A+1) nl n > 1 ∧ ϕ |= {l > 0, A + 1 ≤ l} nl−(A+1)

An Bm n > 1 ∧m > 1 ∧ n ≤ m ∧ ϕ |= {A ≤ B} Bm−n

An ml m > 1 ∧ ϕ |= {n∗A ≤ l} ml−n∗A

nl ml′ n ≤ m ∧ ϕ |= {l ≤ l′} ml′−l

Table 1: Sufficient conditions for proving that e1 ≤ϕ e2

respectively, stand for either a constant n ≥ 1 or an integer variable bound in
ϕ.

Let us explain some of the entries in the table. E.g., the first entry states
that in order to prove that l1 ≤ϕ l2, the context constraint ϕ has to guarantee
that l1 > 0 and that l1 ≤ l2. Also, verifying that An ≤ ml is equivalent to
verifying logm(An) ≤ logm(ml), which in turn is equivalent to verifying that
n∗ logm(A) ≤ l when m > 1 (i.e., m ≥ 2 since m is an integer value). Therefore
we can verify a stronger condition n∗A ≤ l which implies n∗ logm(A) ≤ l, since
logm(A) ≤ A when m ≥ 2. As another example, in order to verify that l ≤ nl

′

it is enough to verify that logn(l) ≤ l′ when n > 1, which can be guaranteed if
l ≤ l′. We use e1 ≤sc

ϕ e2 to denote that we can prove that e1 ≤ϕ e2 using the
sufficient conditions in Table 1.

The “part” of e2 which is not required in order to prove the above relation
becomes the under-approximated quotient of the comparison operation, denoted
adiv(e1, e2) and it is shown in the fourth column of Table 1. An essential idea
in our approach is that adiv is a cost expression in our language and hence
we can transitively apply our techniques to it. This requires having an under-
approximated quotient instead of the exact one. For instance, when we compare
A ≤ϕ 2B , where ϕ = {1 ≤ A,A ≤ B}, the under-approximated quotient for
2B

A is adiv(A, 2B) = 2B−A, what means that 2B−A ≤ϕ
2B

A . Thus, in order to
prove e∗A ≤ϕ e′∗2B it would be enough to check e ≤ϕ e′∗2B−A. Note that

e ≤ϕ e
′∗2B−A implies e ≤ϕ e

′∗2B−A ≤ 2B

A , i.e., e∗A ≤ϕ e
′∗2B .

When we compare two products M1, M2 of basic cost expressions in a
context constraint ϕ, the basic idea is to prove the inclusion relation ≤ϕ for every
basic cost expression in M1 w.r.t. a different element in M2 and at each step
accumulate the approximated quotient inM2 and use it for future comparisons
if needed.

Definition 13 (product comparison reduction step). Given M1,M2 in
Pb and a satisfiable context constraint ϕ, we define a product comparison reduc-
tion step τ∗ : (Pb,Pb) 7→ (Pb,Pb) as follows: τ∗(M1,M2) = (M1−{e1},M2−
{e2} ∪ {adiv(e1, e2)}) provided that e1 ∈M1, e2 ∈M2, and e1 ≤sc

ϕ e2.

16



In each iteration, a product comparison reduction step selects a basic cost ex-
pression from each product being compared such that the context constraint
allows proving the sufficient condition provided in Table 1. This process is re-
peated iteratively until the left hand side expression becomes empty, in which
case the less or equal property is proved, or no more pairs of expressions sat-
isfy the required sufficient conditions, in which case the property is not proved.
The result of this operation is denoted fp∗(M1,M2). This process is finite be-
cause the size of M1 strictly decreases at each iteration. However, τ∗ is not
deterministic, since at each iteration there may be more than one pair of basic
expressions whose sufficient conditions are satisfied. Therefore, if the property
is not proved, other choices may be investigated until a proof is found or all pos-
sible paths are explored. The number of paths is finite since at each iteration
the number of alternative pairs is finite.

Example 7. Let us consider the product {8, log2(1+B), 2A} which is part of
(1)s in Example 6. We want to prove that this product is smaller or equal than
the following one {7, 23∗B} in the context ϕ = {A≤B−1, B≥10}. This can be
done by applying τ∗ three times. In the first iteration, since we know by Table 1
that log2(1+B) ≤sc

ϕ 23∗B and the adiv is 22∗B−1, we obtain the new sets {8, 2A}
and {7, 22∗B−1}. In the second iteration, we can prove that 2A ≤sc

ϕ 22∗B−1, and

add as adiv 22∗B−A−1. Finally, it remains to be checked that 8 ≤sc
ϕ 22∗B−A−1.

This problem is reduced to checking that ϕ |= 8 ≤ 2∗B−A−1, which it trivially
true.

The lemma below, used later, establishes the relation between ≤ϕ and ≤sc
ϕ , and

concretely shows that ≤sc
ϕ is a sound approximation of ≤ϕ.

Lemma 1. Let e, e′ be two flat cost expressions. If e ≤sc
ϕ e′ and ϕ |= e ≥ 1,

then it holds that ϕ |= e′
e ≥ adiv(e, e′) ≥ 1.

Proof. We proceed by inspecting all possible entries in Table 1.

• e=l1, e′=l2, ϕ |= {l1 ≤ l2} and adiv(l1, l2) = 1. Then it is trivial that

ϕ |= l2
l1
≥ 1.

• e=n, e′= loga(A + 1), ϕ |= {an ≤ A + 1} and adiv(l1, l2) = 1. Assume
that loga(A + 1)=x. Then ax=A+1. But ϕ |= A+1 ≥ an, hence ϕ |=
ax ≥ an. Since by definition a ≥ 2 and n ≥ 1, then ϕ |= x ≥ n, i.e.,

ϕ |= loga(A+1) ≥ n, i.e., ϕ |= loga(A+ 1)
n ≥ 1.

• e=l, e′=An, n > 1 ∧ ϕ |= {l ≤ A} and adiv(l, An)=An−1. Then, since

ϕ |= {l ≤ A}, it holds that ϕ |= An

l
≥ An

A =An−1. Since ϕ |= A ≥ 1 and

n > 1, then ϕ |= An−1 ≥ 1.

• e=l, e′=nl′ , n > 1 ∧ ϕ |= {l ≤ l′} and adiv(l, nl′)=nl
′−l. Note that since

ϕ |= l ≤ nl then ϕ |= nl
′

l
≥ nl

′

nl
=nl

′−l. Furthermore since ϕ |= l′ ≥ l then

ϕ |= nl
′−l ≥ 1.

17



• e= loga(A+1), e′=l, ϕ |= {l > 0, A+1 ≤ l}. In this case we have that

ϕ |= loga(A+1) ≤ l. Hence ϕ |= l
loga(A+1)

≥ 1.

• e= loga(A+1), e′= logb(B+1), a ≥ b ∧ ϕ |= {A ≤ B}. It holds ϕ |=
loga(A+1) ≤ logb(B+1). Hence ϕ |= logb(B + 1)

loga(A+ 1)
≥ 1.

• e= loga(A+1), e′=Bn, n > 1∧ϕ |= {A+1 ≤ B} and adiv(loga(A+1), Bn)=
Bn−1. Since ϕ |= {A+1 ≤ B} then ϕ |= loga(A+1) ≤ B. Hence ϕ |=

Bn

loga(A+ 1)
≥ Bn

B =Bn−1. Now since ϕ |= B ≥ 1 and n > 1 then

ϕ |= Bn−1 ≥ 1.

• e= loga(A+1), e′=nl, n > 1∧ϕ |= l > 0∧A+1 ≤ l and adiv(loga(A+1), nl)
=nl−(A+1). It holds ϕ |= loga(A+1) ≤ A+1. Since ϕ |= A ≥ 1 and

n > 1 then ϕ |= A+1 ≤ nA+1. Then ϕ |= nl

loga(A+1)
≥ nl

nA+1 =nl−(A+1).

Finally ϕ |= A+1 ≤ l then ϕ |= l−(A+1) ≥ 0. Since n ≥ 1 then ϕ |=
nl−(A+1) ≥ 1.

• e=An, e′=Bm, n > 1∧m > 1∧n ≤ m∧ϕ |= {A ≤ B}, and adiv(An, Bm)=

Bm−n. Then ϕ |= An ≤ Bn. Hence ϕ |= Bm

An ≥ Bm

Bn =Bm−n. Since

n ≤ m and ϕ |= B ≥ 1 then ϕ |= Bm−n ≥ 1.

• e=An, e′=ml, m > 1 ∧ ϕ |= {n∗A ≤ l} and adiv(An,ml)=ml−n∗A. It
holds that ϕ |= logm(A) ≤ A. Hence ϕ |= n∗ logm(A) ≤ n∗A. Then
ϕ |= logm(An) ≤ logm(mn∗A) and thus ϕ |= An ≤ mn∗A. Now, it holds

that ϕ |= ml

An ≥ ml

mn∗A =ml−(n∗A). Furthermore ϕ |= n∗A ≤ l and m > 1.

Hence ϕ |= ml−(n∗A) ≥ 1.

• e=nl, e′=ml′ , n ≤ m ∧ ϕ |= {l ≤ l′} and adiv(nl,ml′)=ml−l′ . Hence

ϕ |= nl ≤ ml. Thus ϕ |= ml′

nl
≥ ml′

ml =ml′−l. Note also that ϕ |= l ≤ l′.

Then ϕ |= ml−l′ ≥ 1 2

The following proposition states that if we succeed to transform M1 into the
empty set, then the comparison holds. This is what we have done in Example 7
above.

Proposition 1. Given M1,M2 ∈ Pb and a satisfiable context constraint ϕ
such that for all e ∈M1 it holds that ϕ |= e ≥ 1, we have that if fp∗(M1,M2) =
(∅, ) then M1 ≤ϕM2.

Proof. We proceed by induction on the number n of applications of fp∗.

(Base case (n=0)). ThenM1 = ∅ and the result holds trivially since ∅ stands
for the constant 1 and 1 ≤ϕM2.

18



(Inductive case). Let us assume that the proposition holds for any n ≥ 0
applications of fp∗. Consider now n+1 applications of fp∗ where we dis-
tinguish the first application:

fp∗
1(M1,M2) = (M1 − {e1}, (M2 − {e′1}) ∪ {adiv(e1, e

′
1)})

fp∗
n(M1 − {e1}, (M2 − {e′1}) ∪ {adiv(e1, e

′
1)}) = (∅, )

where e1 ≤sc
ϕ e′1. By induction hypothesis:

(♣) M1 − {e1} ≤ϕM2 − {e′1} ∪ {adiv(e1, e
′
1)}

Suppose that M1 = e1∗ . . . ∗em and M2 = e′1∗ . . . ∗e′k. From (♣) we have
that e2∗ . . . ∗em ≤ϕ adiv(e1, e

′
1)∗e′2∗ . . . ∗e′k. Then, since ϕ |= e1 ≥ 1, it

also holds e1∗e2∗ . . . ∗em ≤ϕ e1∗adiv(e1, e
′
1)∗e′2∗ . . . ∗e′k.

From Lemma 1, since e1 ≤sc
ϕ e′1 and ϕ |= e1 ≥ 1, then ϕ |= e1∗adiv(e1, e

′
1) ≤

e′1. Thus e1∗e2∗ . . . ∗em ≤ϕ e
′
1∗e′2∗ . . . ∗e′k and the result holds. 2

4.3. Comparison of Sums of Products

We now aim at comparing two sums of products by relying on the product
comparison of Section 4.2. In this case we are interested in having a notion of
approximated difference when comparing products. The idea is that when we
want to prove k1 ∗A ≤ k2 ∗B, where A ≤ B and k1 and k2 are constant factors,
we can leave as approximated difference of the product comparison the product
(k2− k1) ∗B, provided k2− k1 is greater or equal than zero. As notation, given
a product M, we use constant(M) to denote the constant factor in M, which
is equal to n if there is a constant n ∈ M with n ∈ N+ and, otherwise, it is 1.
We use adiff(M1,M2) to denote constant(M2)− constant(M1).

Definition 14 (sum comparison reduction step). Given S1,S2 ∈ PM and
a satisfiable context constraint ϕ, we define a sum comparison reduction step
τ+ : (PM,PM) 7→ (PM,PM) as follows: τ+(S1,S2)=(S1−{M1}, (S2−{M2})∪
A) provided that M1 ∈ S1, M2 ∈ S2 and fp∗(M1,M2) = (∅, ) where:

A =

{
∅ adiff(M1,M2) ≤ 0

{(M2 − {constant(M2)}) ∪ {adiff(M1,M2)}} otherwise

In order to compare sums of products, we apply τ+ iteratively until there are no
more elements to transform. As for the case of products, this process is finite
because the size of S1 strictly decreases in each iteration. The result of this
operation is denoted fp+(S1,S2). Again, τ+ is not deterministic, since at each
iteration there may be several pairs on which to apply the reduction step.

Example 8. Let us consider the sum of products (5)s in Example 6 together
with S = {{50, C, 2B}, {9, D2, 2B}} and the context constraint ϕ = {A≤B,B≤C,
C≤D} ∪ ϕ24 ∪ {A=n,B=a,C=b}. We can prove that (5)s ≤ϕ S by applying
τ+ three times as follows:

19



1. τ+((5)s,S) = ((5)s−{{12, 2A}},S ′), where S ′ = {{38, C, 2B}, {9, D2, 2B}}.
This application of τ+ is feasible since fp∗({12, 2A}, {50, C, 2B}) = (∅, )
in the context ϕ and the difference constant part of such comparison is 38.

2. Now, we perform one more iteration of τ+ and obtain as result τ+((5)s −
{{12, 2A}},S ′)=((5)s−{{12, 2A}, {10, B, 2A}},S ′′), where S ′′={{28, C, 2B},
{9, D2, 2B}}. Observe that in this case fp∗({10, B, 2A}, {38, C, 2B}) =
(∅, ).

3. Finally, one more iteration of τ+ on the above sum of products, gives
(∅,S ′′′) as result, where S ′′′ = {{28, C, 2B}, {3, D2, 2B}}.

In this last iteration we have used the fact that ϕ |= B ≤ D in order to prove
that fp∗({6, B,C, 2A}, {9, D2, 2B}) = (∅, ) within the context ϕ.

Theorem 4. Let S1, S2 be two sums of products and ϕ a satisfiable context
constraint such that for all M ∈ S1, e ∈ M it holds that ϕ |= e≥1. If
fp+(S1,S2)=(∅, ) then S1 ≤ϕ S2.

Proof. We proceed by induction on the number n of applications of fp+.

(Base case (n=0)). Then S1 = ∅ and the result holds trivially since ∅ stands
for the constant 0.

(Inductive case). Let us assume that the theorem holds for any n≥0 appli-
cations of fp+. Consider now n+1 applications of fp+ and let us focus on
the first step:

fp+
1(S1,S2) = (S1 − {M1}, (S2 − {M′1}) ∪ A)

fp+
n(S1 − {M1}, (S2 − {M′1}) ∪ A) = (∅, )

where, from Proposition 1, we have that M1 ≤ϕ M′1. By induction
hypothesis it holds:

(♠) S1 − {M1} ≤ϕ S2 − {M′1} ∪ A

We distinguish two cases:

1. A=∅. Then the result follows from (♠) together with the fact that
M1 ≤ϕM′1.

2. A6=∅. Let us assume that S1={M1, . . . ,Mm}, S2={M′1, . . . ,M′k},
M1 = k1∗e1∗ . . . ∗el,M′1=k′1∗e′1∗ . . . ∗e′l′ andA = {(k′1−k1)∗e′1∗ . . . ∗e′l′}.
From (♠) we know that {M2, . . . ,Mm} ≤ϕ A ∪ {M′2, . . . ,M′k}.
Hence, it holds also that:

(§) {M1,M2, . . . ,Mm} ≤ϕ {M1} ∪ A ∪ {M′2, . . . ,M′k}

Then it is enough to check that M1+A ≤ϕ M′1 to get the result.
Again we distinguish two cases:

20



(a) fp∗(M1,M′1) has compared k1 with k′1, i.e., k′1=k1+a. Then
e1∗ . . . ∗el ≤ϕ e′1∗ . . . ∗e′l′ . Let us consider any valuation σ such
that σ |= ϕ. We want to prove that:

k1∗σ(e1)∗ . . . ∗σ(el)+a∗σ(e′1)∗ . . . ∗σ(e′l′)≤
(k1+a)∗σ(e′1)∗ . . . ∗σ(e′l′)

But this is true because of e1∗ . . . ∗el ≤ϕ e
′
1∗ . . . ∗e′l′ .

(b) fp∗(M1,M′1) has compared k1 with another basic expression dif-
ferent from k′1. According to Table 1, then the constant k′1 has
not been used in fp∗(M1,M′1), i.e., k1∗e1∗ . . . ∗el ≤ϕ e

′
1∗ . . . ∗e′l′ .

Hence, for any valuation σ such that σ |= ϕ, it trivially holds
that:

k1∗σ(e1)∗ . . . ∗σ(el) + a∗σ(e′1)∗ . . . ∗σ(e′l′) ≤
(k1 + a)∗σ(e′1)∗ . . . ∗σ(e′l′)

2

Example 9. For the sum of products in Example 8, we get fp+((5)s,S) =
(∅,S ′′′). Thus, according to the above theorem, it holds that (5)s ≤ϕ S.

4.4. Composite Comparison of Sums of Products

Clearly, the previous schema for comparing sums of products is not complete.
There are cases like the comparison of {{A3}, {A2}, {A}} w.r.t. {{A6}} within
the context constraint {A > 1} which cannot be proven by using a one-to-one
comparison of products. This is because a single product comparison would
consume the whole expression A6. We try to cover more cases by providing a
composite comparison schema which establishes when a single product is greater
than the addition of several products.

Definition 15 (sum-product comparison reduction step). Consider S1 and
M2, where S1 ∈ PM, M2 ∈ Pb, ϕ is a satisfiable context constraint and for
all M ∈ S1 it holds that ϕ |= M>1. Then, we define a sum-product compar-
ison reduction step τ(+,∗) : (PM,Pb) 7→ (PM,Pb) as follows: τ(+,∗)(S1,M2) =
(S1 − {M′2},M′′2) provided that fp∗(M′2,M2) = (∅,M′′2).

The above reduction step τ(+,∗) is applied while there are new terms to trans-
form. Note that the process is finite since the size of S1 is always decreasing.
We denote by fp(+,∗)(S1,M2) the result of iteratively applying τ(+,∗).

Example 10. Note that fp(+,∗)({{A3}, {A2}, {A}}, {A6}) returns (∅, ∅) w.r.t.
the context constraint ϕ = {A > 1}. To this end, we apply τ(+,∗) three times.
In the first iteration, fp∗({A3}, {A6}) = (∅, {A3}). In the second iteration,
fp∗({A2}, {A3}) = (∅, {A}). Finally in the third iteration fp∗({A}, {A}) =
(∅, ∅).

When using fp(+,∗) to compare sums of products, we can take advantage
of having an approximated difference similar to the one defined in Section 4.3.

21



In particular, we define the approximated difference of comparing S and M,
written adiff(S,M), as constant(M)−constant(S), where constant(S) is defined
as
∑
M′∈S constant(M′). Thus, if we compare {{A3}, {A2}, {A}} with {4, A6},

we can have as approximated difference 1, whose intended meaning is that after
the comparison, {1, A6} remains from {4, A6} and it could be useful to reduce
further addends.

Next we define the general sum reduction step, which illustrates the idea
explained in the paragraph above. As notation, we use PS to denote the set
2PM and Ss to refer to one element of PS .

Definition 16 (general sum comparison reduction step). Let us consider
Ss and S2, where Ss ∈ PS , S2 ∈ PM and ϕ is a satisfiable context constraint.
We define a general sum comparison reduction step µ+ : (PS ,PM) 7→ (PS ,PM)
as follows: µ+(Ss,S2) = (Ss − {S1}, (S2 − {M}) ∪ A), provided that S1 ∈ Ss,
M∈ S2, and fp(+,∗)(S1,M) = (∅, ) where:

A =

{
∅ adiff(S1,M) ≤ 0

{(M−{constant(M)}) ∪ {adiff(S1,M)}} otherwise

Similarly as we have done in previous definitions, µ+ is applied iteratively while
there are new terms to transform. Since the cardinality of Ss decreases in each
step the process is finite. We use fpg

+(Ss,S2) to denote the result of applying
µ+ until there are no sets to transform.

Observe that the above reduction step does not replace the previous sum
comparator reduction step in Definition 14 since it sometimes can be of less
applicability, as fp(+,∗) requires that all elements in the addition are strictly
greater than one. Instead, it is used in combination with Definition 14 so that
when we fail to prove the comparison by using the one-to-one comparison we
attempt with the sum-product comparison above.

Lemma 2. Let ϕ be a satisfiable context constraint and let M1 and M be
products of basic expressions such that for all e ∈M1 it holds that ϕ |= e≥1. If
fp∗(M1,M) = (∅,M′1) then M1∗M′1 ≤ϕM.

Proof. We proceed by induction on the number n of applications of fp∗.

(Base case: (n=0)). Then M1 = ∅ and the result holds trivially.

(Inductive case). Assume that the result holds for n ≥ 0 applications of fp∗.
Consider then the following n+ 1 applications of fp∗:

(1) fp∗
1(M1,M) = (M1 − {e1}, (M−{e′1}) ∪ {adiv(e1, e

′
1)})

(2) fp∗
n(M1 − {e1}, (M−{e′1}) ∪ {adiv(e1, e

′
1)}) = (∅,M′1)

where e1 ≤sc
ϕ e2, and by induction hypothesis on (2):

(§) (M1 − {e1}) ∗M′1 ≤ϕM−{e′1} ∪ {adiv(e1, e
′
1)}

22



We want to prove that M1∗M′1 ≤ϕ M. Suppose that M1=e1∗ . . . ∗ em
and M=e′1∗ . . . ∗e′k. We have to ensure that for all valuations σ such
that σ |= ϕ, it holds that σ(e1)∗ . . . ∗σ(em)∗σ(M′1)≤σ(e′1)∗ . . . ∗σ(e′k). We
distinguish two cases:

1. adiv(e1, e
′
1)=1. From Lemma 1 it holds that ϕ |= e1∗adiv(e1, e2) ≤ e2.

Then the result follows from σ(e1)≤σ(e2) together with (§).

2. Otherwise, from Lemma 1 it follows that
σ(e′1)
σ(e1)

≥σ(adiv(e1, e
′
1)). Fur-

thermore, to prove σ(e1)∗ . . . ∗σ(em)∗σ(M′1)≤σ(e′1)∗ . . . ∗σ(e′k) is equiv-

alent to prove that σ(e2)∗ . . . ∗σ(em)∗σ(M′1)≤σ(e′1)
σ(e1)

∗σ(e′2)∗ . . . ∗σ(e′k).

Then:

From (§)
σ(e2)∗ . . . ∗σ(em)∗σ(M′) ≤ σ(adiv(e1, e

′
1))∗σ(e′2)∗ . . . ∗σ(e′k)

From Lemma 1
σ(e′1)
σ(e1)

∗σ(e′2)∗ . . . ∗σ(e′k) ≥ σ(adiv(e1, e
′
1))∗σ(e′2)∗ . . . ∗σ(e′k)

Hence σ(e2)∗ . . . ∗σ(em)∗σ(M′1) ≤ σ(e′1)
σ(e1)

∗σ(e′2)∗ . . . ∗σ(e′k) and the

result holds. 2

Lemma 3. Let ϕ be a satisfiable context constraint. Given S and M, where
S ∈ PM, M′ ∈ Pb, ϕ |= M > 1 ∧ S > 1 ∧ M′ > 1. If S ≤ϕ M′ then
S+M1 ≤ϕM′∗M1.

Proof. If S ≤ϕM′ then for all σ |= ϕ, it holds that σ(S) ≤ σ(M′). But since
ϕ |= M > 1 ∧ S > 1 ∧M′ > 1, then σ(M) > 1, σ(S) > 1 and σ(M′) > 1.
Then:

σ(S)+σ(M1) ≤ % σ(S) > 1 and σ(M1) > 1
σ(S)∗σ(M1) ≤ % σ(S) ≤ σ(M′) and σ(M′) > 1
σ(M′)∗σ(M)

Hence, S+M1 ≤ϕM′∗M1. 2

Lemma 4. Let ϕ be a satisfiable context constraint. Given S and M, where
S ∈ PM, M ∈ Pb and for all M′ ∈ S, e ∈ M′, it holds that ϕ |= e > 1. If
fp(+,∗)(S,M) = (∅, ) then S ≤ϕM.

Proof. We proceed by induction on the number n of applications of fp(+,∗).

(Base case (n=0)). Then S = ∅ and the result holds trivially.

(Inductive case). Let us suppose that the result holds for all n≥0 applica-
tions of fp(+,∗). Let us consider n+1 applications of fp(+,∗)(S,M). We
separate the first iteration from the remaining ones.

(1) fp(+,∗)
1(S,M) = (S − {M1},M′1) % one step

(2) fp(+,∗)
n(S − {M1},M′1) = (∅, ) % n steps

23



where fp∗(M1,M) = (∅,M′1). By induction hypothesis on (2), it holds
that S−{M1} ≤ϕM′1. Applying Proposition 1 to fp∗(M1,M) = (∅,M′1)
we obtain that M1 ≤ϕM.

Let us suppose that S = {M1, . . . ,Mk}, written asM1+ . . .+Mk. Then:

M2+ . . .+Mk ≤ϕM′1 ⇒ % Lemma 3
M1+M2+ . . .+Mk ≤ϕM′1∗M1 ⇒ % Lemma 2:

M′1∗M1 ≤ϕM
S ≤ϕM

2

The following theorem establishes the correctness of the composite comparison.

Theorem 5 (composite inclusion). Let ϕ be a satisfiable context constraint.
Let S1, S2 be two sums of products such that for all M′ ∈ S1, e ∈ M′ it holds
ϕ |= e>1. Let Ss be a partition of S1. If fpg

+(Ss,S2) = (∅, ) then S1 ≤ϕ S2.

Proof. We proceed by induction on the number n of applications of fpg
+.

(Base case (n=0)). If Ss = ∅ then the result holds trivially.

(Inductive case). Let us suppose the result holds for n ≥ 1 and let us analyze
the case n+ 1. We separate the first step from the rest ones. Thus:

(1) fpg
+

1
(Ss,S2) = (Ss − {S ′}, (S2 − {M}) ∪ A)

where fp(+,∗)(S ′,M) = (∅, ) and A = ∅ if adiff(S ′,M) ≤ 0; otherwise
A = {(M− {constant(M)}) ∪ {adiff(S ′,M)}}. Let us consider now the
remaining n applications of fpg

+:

(2) (fpg
+)n(Ss − {S ′}, (S2 − {M}) ∪ A) = (∅, )

By induction hypothesis on (2): Ss − {S ′} ≤ϕ (S2 − {M}) ∪ A. Now,
since fp(+,∗)(S ′,M) = (∅, ), then from Lemma 4 it holds that S ′ ≤ϕ M.
We distinguish two cases:

• adiff(S ′,M) ≤ 0. Then:

By induction hypothesis: Ss − {S ′} ≤ϕ S2 − {M} ⇒
By S ′ ≤ϕM : (Ss−{S ′})∪{S ′︸ ︷︷ ︸

S1

} ≤ϕ (S2−{M})∪{M}

Hence, it holds that S1 ≤ϕ S2.

• A = {(M−{constant(M)})∪{adiff(S ′,M)}}. Then, let us consider
the multisetM′′ = (M− constant(M))∪{constant(S ′)}. Because of
definition of fp(+,∗) and Table 1, it holds also that:

(§) fp(+,∗)(S ′,M′′) = (∅, )

24



Thus, from Lemma 4 we have that S ′ ≤ϕ M′′. Now it is enough to
reason as follows:

By induction hypothesis: Ss − {S ′} ≤ϕ (S2 − {M}) ∪ A ⇒
By (§) : (Ss − {S ′}) ∪ {S ′}︸ ︷︷ ︸

Ss

≤ϕ ((S2 − {M}) ∪ A) ∪ {M′′}︸ ︷︷ ︸
M

2

5. Applications of Cost Function Comparators

In all applications of resource analysis, such as resource-usage verification,
certification, program synthesis and optimization, it is essential to compare cost
functions. In this section, we discuss how our cost function comparator can be
used in the different applications.

5.1. Checking Effect of Program Optimization, Program Synthesis

Program Optimization is a research field which has received considerable
attention and where technical advances can have significant impact. The aim
of program optimization is, given a program P and some information about the
environment in which P will be executed, to obtain another program P ′ which
has the same semantics as P and a lower resource consumption.

Program optimization can be performed at different levels. Traditionally,
two levels have been studied in depth: source-level optimizations and low-level
optimizations. Source-level optimization handles programs written in high-level
languages and optimization is materialized in terms of source-to-source transfor-
mations. The information which is exploited for optimizing programs is usually
information about particular values of the inputs to the program, as in Partial
Evaluation [21]. Low-level optimization considers transforming compiled code
and usually the information which is exploited refers to particularities of the
hardware where the code will run, such as the number of registers available, etc.
Our comparator is useful for optimizations at both levels, as long as automatic
cost analyzers exist at such levels. Nowadays, most analyzers handle source
programs or bytecode programs, the latter can be considered an intermediate
level between source and low-level code.

In general, program optimization is guided by a number of heuristics and
(infinitely) many optimized programs can potentially be obtained from an ini-
tial program, depending on the heuristics used and the order in which they are
applied. After an initial experimentation phase, the optimization strategy is
usually fixed once and for all in order to obtain a single optimized program per
initial program. However, it seems clear that there is no single optimization
strategy which consistently produces the best results in all cases and that bet-
ter results could be obtained by using different strategies for different programs.
Furthermore, when aggressive transformations are considered, as in the case of
partial evaluation, it turns out to be almost impossible to determine a priori

25



which optimization strategy would produce best results. Thus, another alterna-
tive consists in considering several optimization strategies in order to produce
a set of candidates and then choose a posteriori the best optimized program
among all candidates produced. A few frameworks exist which try to handle
multiple optimization strategies. See e.g. [13, 26]. However, a major drawback
of these approaches is how to choose the best candidate, even when we have
a set of candidates at hand. This is because, in general, programs can receive
(infinitely) many input values. So, what is the set of input values for which we
should compare the behaviour of the candidates?

The availability of automatic resource analyzers allows statically obtaining
an evaluation of the performance of the different candidates in the form of
CFs which is valid for any input value. Thus, the existence of an automatic
comparator for CFs can in principle be used for choosing the candidate with
the best resource consumption. We note that the fact that a program P1 has a
smaller UB than another program P2, though it often does, does not necessarily
mean that P1 is more efficient than P2 due to the inaccuracy introduced by
upper approximations. However, if the goal of the optimization process is to
obtain a program whose resource consumption is guaranteed to be smaller than
some user-provided bounds, this a posteriori optimization approach may allow
obtaining programs with the required resource consumption in situations where
the initial implementations did not meet the resource-usage requirements.

Another application area is that of Program Synthesis whose goal is to ob-
tain an efficient implementation from some initial description, usually given in
a formal specification language, whose goal is clarity more than efficiency. The
situation is in fact quite similar to that of program optimization, since there
are (infinitely) many implementations which correspond to a given specifica-
tion and the final implementation is usually obtained by applying a number of
heuristic program transformations. Again, being able to compare the efficiency
of different candidate implementations is of much interest.

5.2. Verification of Cost Functions

The CFs comparator is the basis of resource usage verification. Essentially,
the user states an assertion about the efficiency of the program (given as a CF
u) which the resource analyzer will try to verify or falsify. For this purpose, the
analyzer infers an upper bound CF fϕ from the program and an initial context
ϕ and then simply uses the comparator to check whether fϕ ≤ϕ u.

For some cost models, such as the number of instructions executed, it is quite
convenient to specify assertions in asympotic form, i.e., u is in big O notation,
denoted ua. In this case, we first transform fϕ into asymptotic form fϕa (e.g.,
by applying the technique in [1]) and then we check fϕa ≤ϕ ua, as our checker
works equally well on asymptotic CFs. Let us see an example.

Example 11. Let us assume that we want to verify that the number of in-
structions required by the execution of a given method m(x, y) in the context
ϕ = {x>1, y>1, x≥y} is in the asymptotic order 3nat(4∗x). Suppose that, by
analyzing the method, we obtain the following upper bound CF :

26



m+(x, y) = 7∗nat(3∗x+1)∗max({100∗nat(x)2∗nat(y)4, 11∗3nat(y−1)∗nat(x+5)2})
+2∗ log2(nat(x+2))∗2nat(y−3)∗ log(nat(y+4))∗nat(2∗x−2∗y)

Its transformation into asymptotic form results in 3nat(y)∗nat(x)3. Using our
comparator, we prove, according to Table 1, that 3y ≤sc

ϕ 3x, where adiv(3y, 34∗x)
= 34∗x−y. Similarly, since ϕ |= x≥y, we can prove that x3 ≤sc

ϕ 34∗x−y. Then

3nat(y)∗nat(x)3 ≤ϕ 3nat(4∗x), i.e., m+(x, y) ∈ O(3nat(4∗x)) w.r.t. the context ϕ.

5.3. Verification of Cost Relations

In this section, we discuss a novel application of our CFs comparator to
verify that a cost relation system (CRS for short) is bounded by a given CF . A
CRS is the output of the first phase of cost analyzers which follow the traditional
approach to cost analysis by Wegbreit [28]. Essentially, given an input program,
automated cost analysis generates from it a CRS that defines its cost by means
of recursive cost equations. Let us introduce some notation. A CRS is a set of
cost equations of the form 〈C(x̄) = e+

∑k
j=1Dj(ȳj), ϕ〉, where C and Dj are

cost relation symbols, e is a cost expression that we accumulate, and ϕ is a linear
constraint. Intuitively, a cost equation states that the cost of C(x̄) is e plus the
sum of the costs of D1(ȳ1), . . . , Dk(ȳk). The linear constraint ϕ specifies the
values of x̄ for which the equation is applicable, and defines relations among the
different variables. W.l.o.g., in what follows we assume that a CRS includes
a single cost relation symbol, i.e., it is stand-alone. Namely, we have Dj=C,
1 ≤ j ≤ k. In order to handle CRS with more than one cost relation symbol, we
rely on the compositional approach of [4]. In a second phase of cost analyzers,
an upper bound from the equations is obtained which is guaranteed to be larger
than or equal to all evaluations of the CRS . Such upper bound is given as a
CF which is not in recursive form.

The application that we describe in this section consists in, instead of ap-
plying the second step and solving the CRS into a CF , we can verify that a
given CF is an upper bound for the CRS . The motivation for this application
is threefold: (1) we might not have techniques to automatically infer an upper
bound from the CRS but we can still check that a given CF is an upper bound,
(2) we sometimes can check that f is an upper bound for the CRS , and f is
strictly smaller than the upper bound that an automatic analyzer can infer,
and (3) we can use it in resource usage certification (see Section 5.4 below).
The soundness of this application is guaranteed by [10], where it is proven that,
given a cost function f(x̄), we have that it is an upper bound of a cost rela-

tion C if, for each equation 〈C(x̄) = e+
∑k

j=1 C(ȳj), ϕ〉 for C, we have that

ϕ |= ∀x̄, ȳj .f(x̄) ≥ e +
∑k

j=1 f(ȳj), i.e., by replacing the given cost function in
the equation, the above CF comparison holds.

Example 12. Consider the following CRS which illustrates motivation (2) above:

C(x) = 0 {x ≥ 0, x ≤ 3}
C(x) = nat(x) + C(x1) + C(x2) {x = x1 + x2, x1 ≥ 2, x2 ≥ 2}

27



Using the approach in [4] (implemented in the PUBS system) we obtain an expo-
nential upper bound nat(x)∗(2nat(x−1)−1). However, we have that nat(x)∗nat(x)
is a tighter upper bound for the CRS that PUBS is unable to compute. The
main idea is that we can verify that the above CRS admits a quadratic bound.
Concretely, it is enough to check that the following two formulas are valid:

(a) ∀x : {x ≥ 0, x ≤ 3} → f(x) ≥ 0
(b) ∀x̄ : {x=x1+x2, x1≥2, x2≥2} → f(x) ≥ nat(x)+f(x1)+f(x2)

where x̄ = x, x1, x2 and f(x) stands for the CF nat(x) ∗ nat(x). Since all vari-
ables are constrained to be non-negative, the nat-operator can be removed. In
the following, in order to clarify the presentation, we avoid the set-notation. In-
stead we write cost expressions as sums of products than implicitly represent sets
of sets of flat CFs. Formula (a) can be verified by checking 0 ≤sc

{x≥0,x≤3} x∗x,

what is a direct consequence of Table 1. With respect to formula (b), the check-
ing process can be done as follows: (1) replace variable x by x1+x2, that re-
turns the new formula ∀x̄ : ϕ→(x1+x2)∗(x1+x2)≥x1+x2+x1∗x1+x2∗x2, where
ϕ={x=x1+x2, x1≥2, x2≥2}; (2) normalize the expression (x1+x2)∗(x1+x2),
resulting in x1∗x1+x2∗x2 +2∗x1∗x2; (3) check x1∗x1+x2∗x2+x1+x2 ≤ϕ x1∗x1+
x2∗x2+2∗x1∗x2 by firstly removing identical addends in both sides of the inequal-
ity and secondly applying Theorem 5 to check x1+x2 ≤ϕ 2∗x1∗x2 as follows:

1. τ∗(x1, 2∗x1∗x2) = ({}, 2∗x2);

2. τ∗(x2, 2∗x2) = ({}, 2);

and thus τ(+,∗)(x1+x2, 2∗x1∗x2) = (∅, ).

The next example is borrowed from [11] and used to illustrate motivation (1)
above. Solving this example requires being able to handle non-linear size rela-
tions which is rather expensive and thus several systems cannot support them
(e.g., PUBS cannot solve it).

Example 13. Consider the CRS taken from [11]:

D(x, y) = 0 {x < 2}
D(x, y) = 1 +D(x+ y, y − 1) {x ≥ 2}

for which, if y is initially positive, the second equation can be applied y+1 times

until y takes the negative value −1 and x is equal to x′, where x′ = x+ y(y+1)
2 .

From that point, the value of x′ begins to decrease until it reaches a negative
value. The number of applications of the second equation can be bounded now
by x′. The problem is that the number of applications of the CRS cannot be
bounded by a linear function and thus PUBS cannot solve it. An upper bound
for this CRS can be specified as follows:

f(x, y) =

{
nat(x) {y ≤ −1}
(y + 1) + nat(x) + y(y+1)

2 {y ≥ 0}

In order to verify that f(x, y) is an upper bound, it is enough to check the validity
of the formulas:

28



(c) ∀x, y : {x < 2} → f(x, y) ≥ 0
(d) ∀x, y {x ≥ 2} → f(x, y) ≥ 1+f(x+ y, y − 1)

In the case of formula (c), we distinguish two cases. If y ≤ −1, then f(x, y) =
nat(x) and 0 ≤sc

ϕ1
nat(x) trivially holds, where ϕ1 = {x < 2, y ≤ −1}. In case of

y ≥ 0 and x ≤ 0, f(x, y) = y∗y+3∗y+2. Then 0 ≤ϕ2
y∗y+3∗y+2 holds, where

ϕ2 = {y ≥ 0, x < 0}. Otherwise, if x > 0∧x < 2, then f(x, y) = y∗y+3∗y+x+2
and again 0 ≤ϕ3 y∗y + 3∗y+x+2 holds, where ϕ3 = {y ≥ 0, x > 0, x < 2}. For
the formula (d) we reason similarly. Assuming that y ≤ −1 then f(x, y) = x.
We need to check that 1+x+y ≤ϕ4

x, where ϕ4 = {y ≤ −1, x ≥ 2}. But it
holds:

1. According to Table 1, τ∗(x, x) = ({}, 1) then τ(+,∗)(1+x+y, x) = (1+y, 1).

2. Similarly, τ∗(1, 1) = ({}, 1) then τ(+,∗)(1+y, 1) = (y, 1).

3. Finally τ(+,∗)(y, 1) = ({}, 1), since y ≤ −1.

Now, Theorem 5 guarantees the result. The last case is y ≥ 0. Then f(x, y) =
y∗y+3∗y+2∗x+2 and y∗y+3∗y+2∗y+1 ≤ϕ5

y∗y+3∗y+2∗x+2 follows from The-
orem 4, where ϕ5 = {x < 0 ∧ y ≥ 0}.

5.4. Resource Usage Certification

Resource usage certification [24, 14, 18, 7, 8] has been proposed as a way to
provide resource guarantees in the context of mobile code. Mobile code includes,
for example running applets and/or plug-ins downloaded from the net in a web
browser or a mobile phone. The purpose of resource certification is to consider
resource usage bounds as security policies. This means that prior to executing
a program, it must be guaranteed that the program satisfies a given resource
usage policy in a context of interest ϕ. As an example, let us assume that
ϕ = {t > 0} and that the resource usage policy, or policy for short, for the
program imposes that the maximum number of instructions executed is:

policy=60 ∗ nat(t)2 + 120 ∗ nat(t) + 13

Let us also assume that a resource analyzer infers the following cost function
for the code at hand ub=24 ∗ nat(t) ∗ log2(nat(t) + 1) + 53 ∗ nat(t) + 12. The
code is acceptable only if ub ≤ϕ policy , which is the case in our example, and
the comparator succeeds to prove it.

The certification problem can be formulated in two ways:

• In a traditional scenario, we have an automatic system which given a
program and a resource usage policy answers yes only if it succeeds to
prove that the program satisfies the policy. The use of our CF comparator
is clear, it is used to check that the CF yielded by the analyzer satisfies
the policy.

• Alternatively, the Proof Carrying Code (PCC) approach splits this process
in two steps: first, an automatic system run by the code producer obtains
an upper bound on the resource usage of the program. Then, the producer

29



provides an unsigned bundle which contains the code, the upper bound
obtained for it, and some evidence which can be used to efficiently check
that the upper bound is correct. In our case, the evidence consists in the
upper bounds computed for the CRSs in the program. Then, the code
consumer has to have an automatic (and efficient) system for checking
that the provided upper bound is actually valid for the code, by using the
provided evidence.

As it is well known from the proof-carrying code [24] theory, the main advantage
of the second scenario, i.e., PCC, is that the evidence only needs to be generated
once and the checking process which occurs at the consumer side should be
more efficient than computing the upper bounds from scratch. Essentially, the
hard work is shifted from the code consumer to the code producer (i.e., the
programmer and/or the compiler), which now has to not only produce the code,
but also infer an upper bound and bundle both together with the evidence.

The consumer, instead of inferring the upper bound, has to check that the
upper bound provided is correct. To do so, the consumer will set up a CRS from
the program in a fully automatic way (see [5]) and will then check that the CFs
provided in the evidence are sound upper bounds for this CRS (by using the
checking process described in Section 5.3 above). Thus, our CF comparator is
used to check that the provided upper bounds constitute a valid certificate of the
program’s efficiency. In essence, the process of inferring an upper bound from
the CRS is more expensive than checking its validity by using our comparator.
Finally, the code will be acceptable, provided that policy is guaranteed, i.e.,
cert ≤ϕ policy , where cert are the upper bounds in the certificate. Again, we
will use the comparator to prove this final step.

5.5. Simplification of Cost Expressions

As already discussed, cost expressions may contain max-subexpressions which
originate from conditional statements in the program, such as if-then-else’s,
switch statements, etc. Whereas in some cases it is evident which of the alter-
natives corresponds to the worst case, in many cases it is not and therefore we
allow the use of subexpressions of the form max({e1, . . . , en}) with n ≥ 1 in cost
expressions.

However, the availability of a CF comparator sometimes allows automati-
cally removing cost expressions ei from S when ∃ej ∈ S, i 6= j s.t. ei ≤ϕ ej ,
where ϕ is the context constraint applicable to the max-subexpression. If the
set S is reduced to a singleton, the max-wrapper can also be simplified away.

Similarly, min-subexpressions can also be simplified in the same way, but
reordering the operands to the ≤ϕ relation. I.e., an expression ei can be removed
when we find another expression ej s.t. ej ≤ϕ ei.

6. Other Approaches and Related Work

In this section, we discuss other possible approaches to handle the problem of
comparing cost functions. In [17], an approach for inferring non-linear invariants

30



using a linear constraints domain (such as polyhedra) has been introduced. The
idea is based on a saturation operator, which lifts linear constraints to non-
linear ones. For example, the constraint Σaixi = a would impose the constraint
ΣaiZxiu = au for each variable u. Here Zxiu is a new variable which corresponds
to the multiplication of xi by u. This technique can be used to compare cost
functions, the idea is to start by saturating the constraints and, at the same
time, converting the expressions to linear expressions until we can use a linear
domain to perform the comparison. For example, when we introduce a variable
Zxiu, all occurrences of xiu in the expressions are replaced by Zxiu. Let us see
an example where: in the first step we have the two cost functions to compare;
in the second step, we replace the exponential with a fresh variable and add the
corresponding constraints; in the third step, we replace the product by another
fresh variable and saturate the constraints:

w · 2x ≥ 2y {x ≥ 0, x ≥ y, w ≥ 1}
w · Z2x ≥ Z2y {x ≥ 0, x ≥ y, , w ≥ 1, Z2x ≥ Z2y}
Zw·2x ≥ Z2y {x ≥ 0, x ≥ y, , w ≥ 1, Z2x ≥ Z2y , Zw·2x ≥ Z2x}

Now, by using a linear constraint domain, the comparison can be proved.
We believe that the saturation operation is very expensive compared to our
technique while it does not seem to add significant precision.

Another approach for checking e1 ≥ϕ e2 is to encode e1 <ϕ e2 as a Boolean
formula that simulates the behavior of the underlying machine architecture.
Unsatisfiability of the Boolean formula can be checked using SAT solvers and
implies that e1 ≥ϕ e2. The drawback of this approach is that it requires fixing
a maximum number of bits for representing the value of each variable and the
values of intermediate calculations. Therefore, the result is guaranteed to be
sound only for the range of numbers that can be represented using such bits.
On the positive side, the approach is complete for this range. In the case of
variables that correspond to integer program variables, the maximum number
of bits can be easily derived from the one of the underlying architecture. Thus,
we expect the method to be precise. However, in the case of variables that
correspond to the size of data-structures, the maximum number of bits is more
difficult to estimate.

Comparing cost functions amounts to checking the validity of e1 − e2 ≥ϕ 0,
which is equivalent to checking the validity of the first order formula ϕ →
e1 − e2 ≥ 0. Computer algebra systems (e.g., Reduce [27]) can be used to
check the validity of such formulas. When e1 and e2 are max expressions over
polynomials, these techniques are even complete (assuming the variables are
real-valued), however, they are computationally expensive – doubly exponential
in the number of variables.

There are other numerical approaches to check the validity of e1 − e2 ≥ϕ 0.
The first one is to find the roots of e1−e2, and check whether those roots satisfy
the constraints ϕ. If they do not, a single point check is enough to solve the
problem. This is because, if the equation is verified at one point, the expressions
are continuous, and there is no sign change since the roots are outside of the
region defined by ϕ, then we can ensure that the equation holds for all possible
values satisfying ϕ. However, the problem of finding the roots with multiple

31



variables is hard in general and often not solvable. Computer algebra systems
(e.g., Mathematica) can be used for finding the roots. The second approach is
based on the observation that there is no need to compute the actual values of
the roots. It is enough to know whether there are roots in the region defined
by ϕ. This can be done by finding the minimum values of expression e1 − e2, a
problem that is more affordable using numerical methods [22]. If the minimum
values in the region defined by ϕ are greater than zero, then there are no roots
in that region. Even if those minimum values are out of the region defined
by ϕ or smaller than zero, it is not necessary to continue trying to find their
values. If the algorithm starts to converge to values out of the region of interest,
the comparison can be proven to be false. One of the open issues about using
numerical methods to solve our problem is whether or not they will be able to
handle cost functions originating from realistic programs and their performance.
We have not explored these issues yet and they remain as subject of future work.

Testing positivity of polynomials is a closely related problem. Practical as-
pects of this problem have received a considerable attention in the community
of term-rewriting systems, mainly to infer polynomial interpretations, which
are polynomials that satisfy some properties that can be reduced to positivity
(see [20] and references thereof). Intuitively, the existence of such polynomial in-
terpretations imply termination of a corresponding term-rewriting system. Any
of these techniques can be used to compare polynomial cost functions, however,
it can be used only on max- and nat-free expressions (since they are mostly
developed for variables with natural values), and without context constraints.
These techniques are powerful, and can be even complete for polynomials with
small degrees [25], which are typically enough for proving termination. However,
cost function often include polynomials of higher degrees since they describe the
complexity of the overall program. Unlike our approach, these approaches are
restricted to polynomials, however, there are some techniques [19] that allow
using expressions of the form max{0, P} where P is a polynomial, they basi-
cally reduce to the previous case using approximations. We believe that the
advantage of our approach, over these approaches, is in its modular nature.
In particular, if we add more sophisticated expressions to our cost functions,
then all we need is to supply a set of comparison rules for corresponding basic
expressions.

After our work, [23] has presented a framework for interval-based resource
usage verification developed in the context of CIAO-Prolog. The main novelty of
the approach is the use of intervals for restricting the applicability of assertions
both when the user expresses a resource policy and as the result of the com-
parison of user-provided assertions with the analysis results. The former is in
fact a particular case of our context constraints which not only allow expressing
intervals of values of variables but also allow expressing relations among values
of variables, such as x ≥ y, which is not expressible using intervals. The latter
is an interesting proposal since it allow indicating what are the input values
for which the comparison (resource policy) does not hold. However, the work
in [23] does not propose any new method for comparing function. It simply
resorts to the use of existing numerical methods for finding roots of polynomial

32



functions, as discussed above. Once the roots are available, it is determined
in each interval between roots whether the comparison holds or not. This has
the important problem that existing methods are only applicable to very simple
functions and cannot be used for cost functions for realistic programs. In fact,
all upper bounds presented in [23] are very simple and they do not contain any
max- nor nat-operators.

On a completely different issue, it is worth mentioning that CFs represent-
ing average-case cost would be extremely useful for the applications of resource
analysis. Unfortunately, automatic computation of average cost is rather hard
and the current state of the art does not include automatic average cost analysis
for realistic programs. It could also be the case that the syntactic form of CFs
for average-case involves constructions which are not handled by the proposed
comparator. Thus, we do not claim that our proposal is directly applicable to
CFs representing average case. Though many of the ideas will be applicable,
some extensions will probably be needed. It remains as future work to extend
our comparator to handle average case. But this can only be done once auto-
matic analyzers for average case of real-life programs become available. As a side
comment, we do not want to underestimate the difficulty of handling average
case CFs. A clear underestimation in the area of resource analysis took place
when it was expected that finding closed form solutions of cost relations was a
relatively simple problem. Once automatic cost analyzers for realistic programs
became available it became evident that the problem was much harder than
initially expected and that existing techniques for solving recurrence relations
were not enough. The problem was not satisfactorily solved until dedicated
frameworks [4] were developed.

7. Conclusions

In conclusion, we have proposed a novel approach to comparing cost func-
tions which is able to handle cost functions obtained from the analysis of realistic
programs. We propose a mechanism for handling nat-, max-, and min-operators
which allows reducing the process of comparing cost functions containing them
to the comparison a a series of (simpler) cost expressions, without any loss of
precision. This mechanism can then be combined with any method for compar-
ing functions without such operators, including the use of numerical methods.
However, in our proposal we also present a novel approach for comparing flat
cost functions which is not based on numerical methods and that is of greater
applicability than such numerical methods, since the latter are generally re-
stricted to polynomial functions. A possibility which could be explored and
remains as future work is the use of numerical methods in cases where our tech-
nique is not precise enough to prove that a function is smaller than another one
and numerical methods are applicable.

From the practical aspect, our prototype implementation performs well, less
than 1 second, when comparing relatively small cost functions. However, it does
not provide an answer in a reasonable time when applied to large expressions.
This is because of the number of combinations of cost expression to consider

33



might be exponentially large. Note, however, that the implementation is just a
prototype, and there is much room for performance improvements, for example
one can discard many of those combinations by only considering the correspond-
ing complexity classes. It is worth noting as well that when checking for e1 ≥ϕ b,
the cost function e1 is typically inferred by a cost analyser, while b is provided
by the user (or vice versa for lower bounds). In such case, one can indeed expect
b to be syntactically compact since it is provides by a user, while e1 might be
quite large because the analyser often fails to simplify it. This means that the
number of combination of cost expressions to consider would be also small in
this case.

Cost functions can represent both upper and lower bounds and our ap-
proach works equally well in both cases. Making cost functions comparisons
automatically and efficiently is essential for any application of automatic cost
analysis. The comparator is currently being integrated in the COSTA [6] and
COSTABS [2] systems, where the applications of cost analysis described along
the paper are put into practice. Besides, a standalone implementation has been
made available online so that other resource analyzers can use it. Finally, our
approach could be combined with more heavyweight techniques, such as those
based on numerical methods, in those cases where our approach is not suffi-
ciently precise.

[1] Elvira Albert, Diego Esteban Alonso-Blas, Puri Arenas, Samir Genaim,
and Germán Puebla. Asymptotic Resource Usage Bounds. In Zhenjiang
Hu, editor, Programming Languages and Systems, 7th Asian Symposium,
APLAS 2009, Seoul, Korea, December 14-16, 2009. Proceedings, volume
5904 of Lecture Notes in Computer Science, pages 294–310. Springer, 2009.

[2] Elvira Albert, Puri Arenas, Samir Genaim, Miguel Gómez-Zamalloa, and
Germán Puebla. COSTABS: A Cost and Termination Analyzer for ABS. In
Oleg Kiselyov and Simon Thompson, editors, Proceedings of the 2012 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
PEPM 2012, Philadelphia, Pennsylvania, USA, January 23-24, 2012, pages
151–154. ACM Press, 2012.

[3] Elvira Albert, Puri Arenas, Samir Genaim, Israel Herraiz, and Germán
Puebla. Comparing Cost Functions in Resource Analysis. In Marko C.
J. D. van Eekelen and Olha Shkaravska, editors, Foundational and Practical
Aspects of Resource Analysis - First International Workshop, FOPARA
2009, Eindhoven, The Netherlands, November 6, 2009, Revised Selected
Papers, volume 6324 of Lecture Notes in Computer Science, pages 1–17.
Springer, 2009.

[4] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Closed-
Form Upper Bounds in Static Cost Analysis. Journal of Automated Rea-
soning, 46(2):161–203, 2011.

[5] Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano
Zanardini. Cost Analysis of Java Bytecode. In Rocco De Nicola, editor,

34



Programming Languages and Systems, 16th European Symposium on Pro-
gramming, ESOP 2007, Held as Part of the Joint European Conferences
on Theory and Practics of Software, ETAPS 2007, Braga, Portugal, March
24 - April 1, 2007, Proceedings, volume 4421 of Lecture Notes in Computer
Science, pages 157–172. Springer-Verlag, March 2007.

[6] Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano
Zanardini. COSTA: Design and Implementation of a Cost and Termina-
tion Analyzer for Java Bytecode. In Frank S. de Boer, Marcello M. Bon-
sangue, Susanne Graf, and Willem P. de Roever, editors, Formal Methods
for Components and Objects, 6th International Symposium, FMCO 2007,
Amsterdam, The Netherlands, October 24-26, 2007, Revised Lectures, vol-
ume 5382 of Lecture Notes in Computer Science, pages 113–132. Springer,
2008.

[7] Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano
Zanardini. Resource Usage Analysis and its Application to Resource Certi-
fication. In Alessandro Aldini, Gilles Barthe, and Roberto Gorrieri, editors,
Foundations of Security Analysis and Design V, FOSAD 2007/2008/2009
Tutorial Lectures, volume 5705 of Lecture Notes in Computer Science, pages
258–288. Springer, 2009.

[8] Elvira Albert, Richard Bubel, Samir Genaim, Reiner Hähnle, Germán
Puebla, and Guillermo Román-Dı́ez. Verified Resource Guarantees using
COSTA and KeY. In Siau-Cheng Khoo and Jeremy G. Siek, editors, Pro-
ceedings of the 2011 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, PEPM 2011, Austin, TX, USA, January 24-25,
2011, SIGPLAN, pages 73–76. ACM, 2011.

[9] Elvira Albert, Samir Genaim, and Abu Naser Masud. On the Inference of
Resource Usage Upper and Lower Bounds. ACM Transactions on Compu-
tational Logic, 14(3):22:1–22:35, 2013.

[10] Diego Esteban Alonso-Blas, Puri Arenas, and Samir Genaim. Precise Cost
Analysis via Local Reasoning. In Dang Van Hung and Mizuhito Ogawa,
editors, Automated Technology for Verification and Analysis - 11th Inter-
national Symposium, ATVA 2013, Hanoi, Vietnam, October 15-18, 2013.
Proceedings, volume 8172 of Lecture Notes in Computer Science, pages
319–333. Springer, 2013.

[11] R. Bagnara and F. Mesnard. Eventual Linear Ranking Functions. CoRR,
abs/1306.1901, 2013.

[12] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approx-
imation of Fixpoints. In Robert M. Graham, Michael A. Harrison, and Ravi
Sethi, editors, Conference Record of the Fourth ACM Symposium on Prin-
ciples of Programming Languages, Los Angeles, California, USA, January
1977, pages 238–252. ACM, 1977.

35



[13] Stephen-John Craig and Michael Leuschel. Self-Tuning Resource Aware
Specialisation for Prolog. In Pedro Barahona and Amy P. Felty, editors,
Proceedings of the 7th International ACM SIGPLAN Conference on Prin-
ciples and Practice of Declarative Programming, July 11-13 2005, Lisbon,
Portugal, pages 23–34. ACM, 2005.

[14] Karl Crary and Stephanie Weirich. Resource Bound Certification. In
Mark N. Wegman and Thomas W. Reps, editors, POPL 2000, Proceedings
of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, Boston, Massachusetts, USA, January 19-21, 2000,
pages 184–198. ACM, 2000.

[15] Saumya K. Debray, Pedro López-Garćıa, Manuel Hermenegildo, and Nai-
Wei Lin. Lower Bound Cost Estimation for Logic Programs. Technical
Report TR CLIP20/95.0, T.U. of Madrid (UPM), Facultad Informática
UPM, 28660-Boadilla del Monte, Madrid-Spain, December 1995.

[16] Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René
Thiemann, and Harald Zankl. Maximal Termination. In Andrei Voronkov,
editor, Rewriting Techniques and Applications, 19th International Confer-
ence, RTA 2008, Hagenberg, Austria, July 15-17, 2008, Proceedings, vol-
ume 5117 of Lecture Notes in Computer Science, pages 110–125. Springer,
2008.

[17] Bhargav S. Gulavani and Sumit Gulwani. A Numerical Abstract Domain
Based on Expression Abstraction and Max Operator with Application in
Timing Analysis. In Aarti Gupta and Sharad Malik, editors, Computer
Aided Verification, 20th International Conference, CAV 2008, Princeton,
NJ, USA, July 7-14, 2008, Proceedings, volume 5123 of Lecture Notes in
Computer Science, pages 370–384. Springer, 2008.

[18] Manuel V. Hermenegildo, Elvira Albert, Pedro López-Garćıa, and Germán
Puebla. Abstraction Carrying Code and Resource-Awareness. In Proceed-
ings of the 7th International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, July 11-13 2005, Lisbon, Portugal,
pages 1–11. ACM, July 2005.

[19] Nao Hirokawa and Aart Middeldorp. Tyrolean Termination Tool: Tech-
niques and Features. Information and Computation, 205(4):474–511, 2007.

[20] Hoon Hong and Dalibor Jakus. Testing Positiveness of Polynomials. Jour-
nal of Automed Reasoning, 21(1):23–38, 1998.

[21] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall international series in
computer science. Prentice Hall, New York, 1993.

[22] Scott Kirkpatrick, D. Gelatt Jr., and Mario P. Vecchi. Optimization by
Simulated Annealing. Science, 220(4598):671–680, 1983.

36



[23] Pedro López-Garćıa, Luthfi Darmawan, Francisco Bueno, and Manuel V.
Hermenegildo. Interval-based Resource Usage Verification: Formalization
and Prototype. In Ricardo Peña, Marko C. J. D. van Eekelen, and Olha
Shkaravska, editors, Foundational and Practical Aspects of Resource Analy-
sis - Second International Workshop, FOPARA 2011, Madrid, Spain, May
19, 2011, Revised Selected Papers, volume 7177 of Lecture Notes in Com-
puter Science, pages 54–71. Springer, 2012.

[24] G. Necula. Proof-Carrying Code. In Peter Lee, Fritz Henglein, and Neil D.
Jones, editors, Conference Record of POPL’97: The 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Papers
Presented at the Symposium, Paris, France, 15-17 January 1997), pages
106–119. ACM Press, 1997.

[25] Friedrich Neurauter, Aart Middeldorp, and Harald Zankl. Monotonic-
ity Criteria for Polynomial Interpretations over the Naturals. In Jürgen
Giesl and Reiner Hähnle, editors, Automated Reasoning, 5th International
Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010. Proceed-
ings, volume 6173 of Lecture Notes in Computer Science, pages 502–517.
Springer, 2010.

[26] Claudio Ochoa and Germán Puebla. Oracle-Based Poly-Controlled Partial
Evaluation. Electronic Notes in Theoretical Computer Science, 220(3):145–
161, 2008.

[27] REDUCE Computer Algebra System. http://reduce-algebra.

sourceforge.net.

[28] B. Wegbreit. Mechanical Program Analysis. Communications of the ACM,
18(9):528–539, 1975.

37


