
Dealing with Numeric Fields in Termination
Analysis of Java-like Languages ?

Elvira Albert1, Puri Arenas1, Samir Genaim2, and Germán Puebla2

1 DSIC, Complutense University of Madrid (UCM), Spain
2 CLIP, Technical University of Madrid (UPM), Spain

Abstract. Termination analysis tools strive to find proofs of termina-
tion for as wide a class of (terminating) programs as possible. Though
several tools exist which are able to prove termination of non-trivial pro-
grams, when one tries to apply them to realistic programs, there are still
a number of open problems. In the case of Java-like languages, one of
such problems is to find a practical solution to prove termination when
the termination behaviour of loops is affected by numeric fields. We have
performed statistics on the Java libraries to see how often this happens
in practice and we found that in 12.95% of cases, the number of itera-
tions of loops (and therefore termination) explicitly depends on values
stored in fields and, in the vast majority of cases, such fields are numeric.
Inspired by the examples found in the libraries, this paper identifies a
series of difficulties that need to be solved in order to deal with numeric
fields in termination and propose some ideas towards a lightweight anal-
ysis which is able to prove termination of sequential Java-like programs
in the presence of numeric fields.

1 Termination Analysis and Numeric Fields

Termination analysis tools strive to find proofs of termination for as wide a class
of (terminating) programs as possible. Termination analysis is about the study of
loops, which are the program constructs which may introduce non-termination.
Loops may correspond to iterative constructs or to recursion. The boolean con-
ditions which determine whether the loop should be executed again or not are
called guards. Automated techniques for proving termination are typically based
on analyses which track size information, such as the value of numeric data or
array indexes, or the size of data structures. In particular, analysis should keep
track of how the (size of the) data involved in loop guards changes when the
loop goes through its iterations. This information is used for specifying a rank-
ing function for the loop [14], which is a function which strictly decreases on a
? This work was funded in part by the Information Society Technologies program

of the European Commission, Future and Emerging Technologies under the IST-
15905 MOBIUS project, by the Spanish Ministry of Education (MEC) under the
TIN-2005-09207 MERIT project, and the Madrid Regional Government under the
S-0505/TIC/0407 PROMESAS project. S. Genaim was supported by a Juan de la
Cierva Fellowship awarded by MEC.

well-founded domain at each iteration of the loop, thus guaranteeing that the
loop will be executed a finite number of times.

In the last two decades, a variety of sophisticated termination analysis tools
have been developed. Several analyses and tools exist, primarily for less-widely
used programming languages, including term rewrite systems [8], and logic and
functional languages [11, 6, 10]. Termination-proving techniques are also emerg-
ing in the imperative paradigm [5, 7, 8], even for dealing with large industrial
code [7].

Termination analysis of realistic object-oriented programming languages faces
new difficulties due to the existence of advanced features such as exceptions,
virtual method invocation, references, heap-allocated data-structures, objects,
fields. Focusing on Java, termination analyzers for Java bytecode programs [1]
and for Java source [9] are being developed which are able to accurately han-
dle a good number of the features mentioned above. However, interesting open
problems still remain. In particular, it is well known that the heap poses im-
portant difficulties to static analysis. Some reasons for this are that the heap is
a global data structure whose contents are not accessed using named variables,
but rather using (possibly chained) references. Therefore, the same location in
the heap may be modified using different aliased references and, furthermore,
references may be reassigned several times, and thus they may point to different
locations during execution. When loop guards involve information stored in the
heap, such as object fields, tracking size information becomes rather complex and
accurate aliasing information is required in order to track all possible updates
of the corresponding fields (see e.g. [12]).

A partial solution to this problem is already solved by the path-length do-
main [9] which allows proving termination of loops which traverse acyclic heap-
allocated data structures (i.e., linked lists, trees, etc.). Path-length is an abstract
domain which, for reference values, provides a safe approximation of the length
of the longest reference chain reachable from it. Unfortunately, though the path-
length domain is a useful abstraction for fields which contain references, it does
not capture any information about fields which contain numbers. In this work we
look into the Sun implementation of the Java libraries for J2SE 1.4.2 in order to
estimate how often loop termination depends on numeric values stored in fields
and to try to come up with sufficient conditions for termination which are able
to cover a large fraction of those loops whose termination is not provable using
current techniques, such as those in [9, 1].

2 Motivating Examples from the Java Libraries

Since termination is an undecidable problem, all techniques for proving termina-
tion provide sufficient (but not necessary) conditions for termination. Therefore,
for any termination proving technique it is possible to find terminating pro-
grams where the given technique fails to prove termination. Thus, usually the
practicality of termination analyses is measured by applying the analyses to a
representative set of real programs. In this work, the design of the analysis is

driven by common programming patterns for loops that we have found in the
Java libraries. By looking at Sun’s implementation of the J2SE (version 1.4.2 13)
libraries, which contain 71432 methods, we have found 7886 loops (for, while, and
do) from which 1021 (12.95%) explicitly involve fields in their guards. By inspect-
ing these 1021 loops, we have observed, among others, the following three kinds
of common patterns in the Java libraries.

Pattern #1: Loops in this category use numeric fields as bounds for loop counters
and, moreover, the value of those fields is not updated within the loop. This is
demonstrated in the following loop of the method public void or(BitSet set) of
library java.util.BitSet, where unitsInUse is a field of type int:

for(; i<set.unitsInUse; i++) bits[i]=set.bits[i];

Pattern #2: Loops in this category are similar to those in the previous cat-
egory. The difference is that, rather than corresponding to the value of a nu-
meric field, the bound of the loop counter corresponds to the length of an array
which is stored in a field. In this case, even if the elements of the array may
be updated within the loop, if the field itself does not, the length of the array
remains constant. This is demonstrated in the following example, correspond-
ing to method public void fixupVariables(java.util.Vector vars, int globalsSize) of
library org. apache.xpath.functions.FunctionMultiArgs where m args is a field of
type Expression[]:

for(int i=0; i<m args.length; i++) m args[i].fixupVariables(vars,globalsSize);

Pattern #3: Loops in this category use numeric fields as loop counters, which
means that the field value is updated within the loop, but none of the references
in the path to the field (in this example, the chain just consists of the reference
this) are re-assigned within the loop, i.e., all updates correspond to the same ob-
ject on the heap. This is demonstrated in the following loop of the method public
synchronized void setLength(int newLength) in the library java.lang.StringBuffer,
in which count is a field of type int:

for(; count<newLength; count++) value[count] = ’\0’;

In this paper we concentrate on proving termination of loops that fall in
the above categories by providing (uniform) conditions under which proving
termination of such loops becomes possible. The Java libraries include also other
patterns such as loops that: (1) increase/decrease an integer variable until it
reaches a given upper/lower bound; (2) traverse a non-cyclical data structure or
an array; (3) look for an element in an input stream, which is common in classes
that manipulate structured text such as parsing XML documents; and (4) look
for a non-null element in a given array in a circular way, which is very common
in the multi-threading classes. The first two patterns are the major part of the
loops, and they are already handled in [1]. The other patterns are planned for
future research and are not addressed in this paper.

3 Dealing with Fields in Termination

In a Java-like language, objects are stored in the heap and they are accessed by
means of references (or pointers). References can take the value null or point to
an object in the heap. Given a reference l which points to an object o, l.f denotes
the value of the field f in the object o. We say that a syntactic construction of
the form l.f is a field access. Each field f has a unique signature, which consists
of the class where it is declared, its type, and its name.

Objects are global in that they survive the execution of methods. Typically,
when a method starts execution, a large number of objects may exist in the heap.
One approach to analyzing programs with objects is to compute an abstraction
of the heap (see [13]) which approximates the execution context of each method.
This usually requires computing abstractions of all possible objects in the pro-
gram, which might turn out to be too expensive in practice if one wants to deal
with real programs. However, in most cases, only a small fraction of such objects
affects the execution of the method. We seek for a more lightweight approach
which tries to approximate the contents of only a subset of the objects in the
heap. The approach must remain correct by making safe assumptions about the
objects (and fields) whose contents are not taken into consideration.

Another disadvantage of computing an abstraction of the heap, in addition
to its computational complexity, is that we end up obtaining termination in-
formation which is context-dependent. Though context dependent analysis is in
principle more precise, the results obtained are not extrapolable to other execu-
tion contexts. In particular, in the case of libraries, ideally we would like to prove
termination in a context-independent way, i.e., regardless of what the contents
of the heap are when the method is executed.

We now introduce the concept of local field access. In particular, we are
interested in finding field accesses which are local to a loop. Though termination
analysis in our context aims at proving termination of methods, in the rest of the
paper we will concentrate on loops since they are the main subject of termination
analysis.

Definition 1 (local field access). We say that a field access l.r1.rn.f ,
where f is a numeric field, is local to a loop L if

(i) No prefix of l.r1.rn changes its value within L, i.e., they remain constant.
(ii) If the value of l.r1.rn.f changes within L, then all write accesses have to

be done explicitly through the field access l.r1.rn.f .

Condition (i) guarantees that all occurrences of the field access within the loop re-
fer to the same memory location in the heap. Note that the prefixes of l.r1.rn,
i.e., l, l.r1, l.r1.r2, . . . are references which altogether form a chain to an object
where the numeric field f is stored. Condition (ii) guarantees that all write ac-
cesses to the field can be syntactically identified. Note that this condition can
be violated due to aliasing, since we can have different field access which update
the same memory location.

Given a loop L, we denote by g-fields(L) the set of field accesses l.r1 . . . rn.f ,
where f is a numeric field, which explicitly appear inside the guard of L. For
instance, for the three loops in Section 2, the sets g-fields(L) are, respectively,
{this.unitsInUse}, {m args.length} and {this.count}. These three fields are locally
accessed within their corresponding loops. The practical implication is: if we
ensure that a field in g-fields(L) is local, then we are able to treat this field
in the same way as if it were a local variable, as regards the analysis of L.
Essentially, given a loop L, the analysis proceeds as follows:

1. Compute the set g-fields(L).
2. Compute the set l-g-fields(L), which is the subset of g-fields(L) which con-

tains the field accesses whose locality condition has been proved.
3. Analyze the termination of L by considering those field accesses in l-g-

fields(L) as if they were local variables.

The method is applied locally to all nested loops in L. Note that the termi-
nation of a method is ensured if all loops involved in its body are terminating.
By involved we mean not only those loops occurring explicitly in the body but
also those coming from possible calls to some other methods.

3.1 Syntactic Inference of the Locality Condition on Field Accesses

The above approach is practical only if we provide effective mechanisms to prove
the locality condition on field accesses. In this section, we consider only loops
that do not contain method invocations. Later, in Section 4, we take method
invocations into account. Now, we present sufficient syntactic conditions for en-
suring that a field access is local. The following conditions ensure that a numeric
field access l.r1.rn.f is local to a loop L:

1. The reference variable l remains constant in L. This can be ensured by
checking that there is no assignment to l within L.

2. All reference fields l.r1, . . . , l.r1...rn are constant in L. This can be ensured
by checking that there is no assignment within L to a field with the same
signature as any of ri.

3. All assignments to a field with the same signature as f in L are done through
the field access l.r1.rn.f .

Let us briefly explain each of the above conditions. Conditions 1 and 2 ensure
point (i) of Definition 1. The reason why we separate it into two conditions
is due to the way in which it is syntactically checked in each case. For the
reference variable l, we check that there is no assignment to it. These conditions
guarantee that we do not incorrectly consider a loop of the form while (l.size <
10) {l.size++; l=new C(); } as terminating. Note that this loop is not guaranteed
to terminate since l potentially changes the location of size and hence its value.

Condition 2 guarantees that we do not change any of the intermediary refer-
ence fields l.r1, . . . , l.r1...rn. Note that if we modify a reference field l.r1...ri then

we fail to ensure constancy of the local field access. For instance, we would fail
to prove termination of this loop while (l.r1.size < 10) {l.r1.size++; l’.r1=z; }.
This is a safe assumption, as without knowledge about the aliasing of l and l′,
we might be changing the reference to size.

Condition 3 is a sufficient condition to ensure that the field is not updated
due to possible aliasing with another object (point (ii) in Definition 1). This
condition is not satisfied in a loop of the form while (l.size < 10) {l.size++;
l’.size--; } and therefore we do not prove termination for it. This is reasonable,
as l and l′ might be aliased during the execution.

Example 1. Reconsider the third loop in Section 2. For clarity, we replace the
access to the field count to explicitly include the this path variable:

for(; this.count<newLength; this.count++) value[this.count] = ’\0’;

We can prove that this.count is local to the loop by checking the syntactic con-
ditions stated above: the reference this does not change; and all updates to
this.count are done through the field access this.count. The key point is that,
since this.count is local, we can safely treat it as local variable. Consequently,
existing termination analysers [3] are able to infer that this.count is increasing at
each iteration. Besides, as newLength remains constant in the loop, the analyzer
finds out that newLength-this.count is a decreasing well-founded measure and
thus termination is guaranteed. 2

4 Termination with (Virtual) Method Invocations

In this section, we address the more challenging problem of proving the termi-
nation of loops which contain method invocations. As notation, we denote by
M(L) the set of methods transitively invoked within the scope of a loop L. We
now study what are the conditions that the methods in M(L) must satisfy in
order to preserve the locality condition on g-fields(L).

Consider a method m invoked within L, we distinguish three possible scenar-
ios. In the first two ones, the implementation of m is available at analysis time
and thus we can apply the techniques to detect local field accesses to the code
in m. As our method is purely syntactic, in order to check the conditions on m,
first we must do a renaming between the variables in the call and the formal
parameters in m, as parameter passing does. Note that, when a method m is
invoked from a reference l, the this reference in m is renamed to l in order to
check the conditions. In the first scenario, method m does not modify the value
of the (numeric) field, whereas in the second one it does. In the third one, the
implementation of m either it is not available (i.e., it is an abstract or native
method) or it has been redefined by means of subclassing. We aim at proving
modular termination of the loop by making assumptions on m. We study these
scenarios in more detail below.

Scenario 1. Consider method test1 at the top of the right-hand column in Fig. 1.
Due to dynamic dispatching, the execution of a.m1() can correspond to method

class A {
int f,g;
int m1(){return 1;}

};
abstract class B extends A {

int m1(){return 2;}
void m2(){

f = f + 1;
}
abstract void m3();

};
class C extends B {

void m3() { g=g-1; }
};

void test1(A a,int k) {
while (a.f < k) a.f = a.f + a.m1();

}
void test2(B b,int k) {

while (b.f < k) b.m2();
}
void test3(B a,int k) {

while (a.f < k){
a.m3();
a.f = a.f + a.m1();}

}

Fig. 1. Termination with fields and method invocations

m1 in class A or to method m1 in class B. Since, in both cases, the reference
variable a remains constant and the field a.f is not updated within either imple-
mentation of m1, we can guarantee that the field access a.f is local to (the loop
in) test1. Proving termination now is straightforward since both implementations
of m1 return a positive number.

Scenario 2. Now, we consider the case that, even if the field access is local to
the loop, the field is updated during the execution of the invoked method. This
happens, for example, in method test2 where the call b.m2() increments the value
of b.f. Indeed, method m2 is responsible for the termination of test2. In this case,
we need to track the variations in the field b.f in an inter-procedural manner.
One way to do it is by inlining the invoked method. However, this cannot al-
ways be done, as it is problematic for recursive methods. Another approach is
to transform the methods in such a way that they carry as additional param-
eters the fields that must be tracked. When we have virtual invocations and
several instances of the same method can be executed at runtime, we need to do
such transformation to all the possible instances. Doing it at the level of Java
would require a more sophisticated transformation, since parameters are passed
by value. It could, however, be easily integrated in a termination analyzer like
[1], as it works on an intermediate representation with permits multiple output
parameters. We plan to develop this part in an extended version of this work.

Scenario 3. If the code of a method m in M(L) is not available or the implemen-
tation of the method has been redefined, unfortunately we can say very little
about the termination of L. For instance, if m is an abstract method, it is cus-
tomary that the user defines a new class which implements m and it is always
possible that it modifies the fields which affect the termination of the loop. Also,
the new implementation might introduce callbacks which endanger termination.
Clearly, one possibility is, once the implementation is available, to re-analyze

the loop with the new method. More interestingly, we can try to prove modu-
lar termination of the loop by assuming that (1) the method terminates, (2) it
does not update any field access in g-fields and (3) it does not have callbacks.
Once the new implementation is available, we actually have to ensure that the
method m does not introduce a termination problem in L by checking the first
two syntactic conditions in Sect. 3.1 as well as proving termination of m by
applying our method to m again. For instance, consider method test3, which is
similar to test1, but where a call to the (abstract) method m3 has been added
in the body of the loop. Assume that the class C is not available, then we make
the assumption that m3 is terminating and does not update a.f. Under these
assumptions, we can prove modular termination of the loop. Consider now that
the user defines class C at the bottom. Trivially, this method terminates and
besides we can ensure that a.f is never updated from it. Note that, if the update
inside m3 was on f instead of on g, we would fail to ensure that that m3 does
not interfere with the guard. Indeed, the loop does not terminate in this case.

4.1 Method Invocations in the Java Libraries

It is common to find loops for scenarios 1 and 3 in the Java libraries. For instance,
the loop of Pattern #2 of Section 2 is an example of scenario 3. The method
fixupVariables invoked by m args[i] is an abstract method of the library org.apa-
che.xpath.Expression. The code is not available, thus we can only aim at proving
termination modularly. We first make the assumption that fixupVariables will
not introduce a termination problem in the loop. Under this assumption, we can
prove termination of the loop. Note that, for actual implementation of fixupVari-
ables, we will have to check that the local access condition holds and that it
terminates.

We found many loops for scenario 1. For instance, the following loop appears
in method public int indexOf(Object elem) of the library java.util.ArrayList:

for (int i = 0;i<size;i++)
if (elem.equals(elementData[i])) return i;

where size is a field of type int. Its termination depends on the termination of the
calls to elem.equals(elementData[i]), where elem and elementData[i] are objects of
class java.lang.Object. The implementation of equals is available and contains as
unique instruction return (this==obj), which ensures the local field access of size.
Thus the loop is definitely terminating. It is rare in the libraries to find loops
for scenario 2, indeed we have not found any. Though we believe it is necessary
to provide solutions for them in order to handle the termination of user-defined
programs which rely on the libraries and define methods which actually update
the fields.

It is important to note that the solution we have proposed for this scenario
is valid as long as the implementation of the missing methods does not use
static fields. The reason for this is that static fields can be, similarly to global
variables, used in the code without being passed as arguments to the method.
Therefore, the set of classes reachable from a method signature, as obtained by

the procedure above, is not guaranteed to be a safe approximation of the actual
classes reached by execution in the presence of static fields.

5 Perspectives for Future Work

The state of the practice in termination analysis is moving beyond less-widely
used programming languages to realistic object-oriented languages. This paper
draws attention to some difficulties that need to be solved if object fields are to
be supported by termination analyzers. In particular, tracking size information
becomes rather complex, and accurate aliasing information is required in order
to track all possible updates of the corresponding fields. Motivated by examples
found in the Java libraries, we have proposed some ideas towards dealing with
numeric fields in a practical manner. The perspectives on the application of
our technique include to infer termination annotations for as many methods in
the Java libraries as possible. Applying termination tools on realistic programs
which use libraries is a challenging problem, as there are many dependencies
between the library classes and, in our experience, even small applications require
analyzing a high number of library methods. By using precomputed annotations,
the analyzer can safely assume the termination of those annotated methods in
the Java libraries (and those that they depend upon).3

Although our ideas have not been experimentally evaluated yet, we believe
that most of the patterns found in the libraries match those presented in Sec. 2.
We, nevertheless, plan to improve the accuracy of the analysis in order to cover
a broader range of patterns. For instance, as a starting point, we have proposed
to check the local field access condition on those fields which appear explic-
itly in the guards, denoted g-fields. There are, of course, other possibilities and
enhancements:

– Ideally, we should try to prove the locality condition not only on g-fields,
but also on those fields which may interact with g-fields. For instance, in a
loop of the form while (l.size < 10) {l.size+= l’.size; }, unless we track some
information about l′.size (in this case, its sign would suffice), we will fail to
prove termination. Unfortunately, it is not always trivial to determine the
minimal set of fields which may interact with g-fields. In particular, a simple
syntactic inspection is not enough.

– To simplify the above point, another idea would be to try and prove the
locality condition on all fields which appear inside the scope of the loop.
This approach would be in general more accurate (e.g., would solve the
above problem) but more expensive. Importantly, even if not all fields are
local to the loop, the termination analysis proceeds (step 3 in Sect. 3). As
long as the non-local field accesses do not affect the termination behaviour,
the analysis can still succeed to prove termination.

3 Note that precomputed assertions are valid as long as the user does not redefine
methods which have been used (and analysed) to infer the assertions.

– Another interesting refinement is to consider not only the fields which ap-
pear explicit in the guards but also those which are accessed through getter
methods like while (l.getSize() < 10) {...}. For this, we should go through
the code of the methods invoked in the loop guards and identify those fields.
A simple solution to this problem is inlining the method. Afterwards, the
same basic techniques explained in the paper could be applied.

It can be seen that in some cases there is an accuracy vs efficiency tradeoff and
also that, what it is optimal for one example might not be good for others. We
need to perform experimental evaluation to assess the different options.

From an implementation perspective, we plan to enhance the costa system
[3] with the ideas presented in this paper. costa is a cost and termination an-
alyzer which works directly on the bytecode (and has no knowledge about the
source Java). The termination module is based on the techniques proposed in [1]
and the cost module on the method described in [2]. To carry out the implemen-
tation, the first issue is to incorporate the syntactic conditions to prove whether
fields are accessed locally. Condition 3 can be easily checked on the bytecode by
seeing that there is no putfield to the corresponding field signatures. Checking
that the object does not change (conditions 1 and 2) requires to track dependen-
cies between stack variables and local variables. This happens because, in the
bytecode, the access to a field is done by first pushing the variable (on which
the condition is to be checked) to the stack and then the field is accessed from
the stack variable. This check can be done syntactically in most cases due to the
elimination of stack variables [4]. Once the syntactic conditions are checked, we
will implement the extensions to treat fields as local variables during analysis.
This is straightforward to do in costa, as the tool converts the bytecode into
a rule-based representation where the local variables (and the stack positions)
appear as arguments of these rules. We can just add the required fields as addi-
tional arguments to them. Size analysis will directly treat them as it does with
local variables in order to infer how they increase/decrease over the program.

References

1. E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termi-
nation Analysis of Java Bytecode. In FMOODS, LNCS. Springer-Verlag, 2008.

2. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of
java bytecode. In ESOP’07, LNCS, 2007.

3. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: A Cost
and Termination Analyzer for Java Bytecode. In Proc. of BYTECODE Workshop,
ENTCS. Elsevier, 2008. To appear.

4. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Removing Useless
Variables in Cost Analysis of Java Bytecode. In Proc. SAC. ACM Press, 2008.

5. A. Bradley, Z. Manna, and H. Sipma. Termination of polynomial programs. In
VMCAI, 2005.

6. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic
programs. J. Log. Program., 41(1):103–123, 1999.

7. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.
In PLDI, 2006.

8. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic Termi-
nation Proofs in the Dependency Pair Framework. In IJCAR, 2006.

9. P. Hill, E. Payet, and F. Spoto. Path-length analysis of object-oriented programs.
In Proc. EAAI. Elsevier, 2006.

10. C. Lee, N. Jones, and A. Ben-Amram. The size-change principle for program
termination. In Proc. POPL. ACM, 2001.

11. N. Lindenstrauss and Y. Sagiv. Automatic termination analysis of logic programs.
In ICLP, 1997.

12. C. Marché and C. Paulin-Mohring. Reasoning about java programs with aliasing
and frame conditions. In J. Hurd and T. F. Melham, editors, TPHOLs, volume
3603 of Lecture Notes in Computer Science, pages 179–194. Springer, 2005.

13. A. Miné. Field-sensitive value analysis of embedded c programs with union types
and pointer arithmetics. In M. J. Irwin and K. D. Bosschere, editors, LCTES,
pages 54–63. ACM, 2006.

14. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In VMCAI, 2004.

