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Abstract. Cost functions provide information about the amount of re-
sources required to execute a program in terms of the sizes of input
arguments. They can provide an upper-bound, a lower-bound, or the
average-case cost. Motivated by the existence of a number of automatic
cost analyzers which produce cost functions, we propose an approach for
automatically proving that a cost function is smaller than another one.
In all applications of resource analysis, such as resource-usage verifica-
tion, program synthesis and optimization, etc., it is essential to compare
cost functions. This allows choosing an implementation with smaller cost
or guaranteeing that the given resource-usage bounds are preserved. Un-
fortunately, automatically generated cost functions for realistic programs
tend to be rather intricate, defined by multiple cases, involving non-linear
subexpressions (e.g., exponential, polynomial and logarithmic) and they
can contain multiple variables, possibly related by means of constraints.
Thus, comparing cost functions is far from trivial. Our approach first
syntactically transforms functions into simpler forms and then applies a
number of sufficient conditions which guarantee that a set of expressions
is smaller than another expression. Our preliminary implementation in
the COSTA system indicates that the approach can be useful in practice.

1 Introduction

Cost analysis [12,6] aims at statically predicting the resource consumption of
programs. Given a program, cost analysis produces a cost function which ap-
proximates the resource consumption of the program in terms of the input data
sizes. This approximation can be in the form of an upper-bound, a lower-bound,
or the average-case resource consumption, depending on the particular analysis
and the target application. For instance, upper bounds are required to ensure
that a program can run within the resources available; lower bounds are useful
for scheduling distributed computations. The seminal cost analysis framework
by Wegbreit [12] was already generic on the notion of cost model, e.g., it can be
used to measure different resources, such as the number of instructions executed,
the memory allocated, the number of calls to a certain method, etc. Thus, cost
functions can be used to predict any of such resources.

In all applications of resource analysis, such as resource-usage verification,
program synthesis and optimization, etc., it is necessary to compare cost func-
tions. This allows choosing an implementation with smaller cost or to guarantee
that the given resource-usage bounds are preserved. Essentially, given a method



m, a cost function fm and a set of linear constraints φm which impose size re-
strictions (e.g., that a variable in m is larger than a certain value or that the size
of an array is non zero, etc.), we aim at comparing it with another cost function
bound b and corresponding size constraints φb. Depending on the application,
such functions can be automatically inferred by a resource analyzer (e.g., if we
want to choose between two implementations), one of them can be user-defined
(e.g., in resource usage verification one tries to verify, i.e., prove or disprove,
assertions written by the user about the efficiency of the program).

From a mathematical perspective, the problem of cost function comparison
is analogous to the problem of proving that the difference of both functions is
a decreasing or increasing function, e.g., b − fm ≥ 0 in the context φb ∧ φm.
This is undecidable and also non-trivial, as cost functions involve non-linear
subexpressions (e.g., exponential, polynomial and logarithmic subexpressions)
and they can contain multiple variables possibly related by means of constraints
in φb and φm. In order to develop a practical approach to the comparison of cost
functions, we take advantage of the form that cost functions originating from
the analysis of programs have and of the fact that they evaluate to non-negative
values. Essentially, our technique consists in the following steps:

1. Normalizing cost functions to a form which make them amenable to be syn-
tactically compared, e.g., this step includes transforming them to sums of
products of basic cost expressions.

2. Defining a series of comparison rules for basic cost expressions and their
(approximated) differences, which then allow us to compare two products.

3. Providing sufficient conditions for comparing two sums of products by relying
on the product comparison, and enhancing it with a composite comparison
schema which establishes when a product is larger than a sum of products.

We have implemented our technique in the COSTA system [3], a COSt and
Termination Analyzer for Java bytecode. Our experimental results demonstrate
that our approach works well in practice, it can deal with cost functions obtained
from realistic programs and verifies user-provided upper bounds efficiently.

The rest of the paper is organized as follows. The next section introduces the
notion of cost bound function in a generic way. Sect. 3 presents the problem of
comparing cost functions and relates it to the problem of checking the inclusion
of functions. In Sect. 4, we introduce our approach to prove the inclusion of one
cost function into another. Section 5 describes our implementation and how it
can be used online. In Sect. 6, we conclude by overviewing other approaches and
related work.

2 Cost Functions

Let us introduce some notation. The sets of natural, integer, real, non-zero nat-
ural and non-negative real values are denoted by N, Z, R, N+, and R

+, respec-
tively. We write x, y, and z, to denote variables which range over Z. A linear
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expression has the form v0 + v1x1 + . . . + vnxn, where vi ∈ Z, 0 ≤ i ≤ n. Simi-
larly, a linear constraint (over Z) has the form l1 ≤ l2, where l1 and l2 are linear
expressions. For simplicity we write l1 = l2 instead of l1 ≤ l2 ∧ l2 ≤ l1, and
l1 < l2 instead of l1+1 ≤ l2. Note that constraints with rational coefficients can
be always transformed into equivalent constraints with integer coefficients, e.g.,
1
2x > y is equivalent to x > 2y. The notation t̄ stands for a sequence of entities
t1, . . . , tn, for some n>0. We write ϕ, φ or ψ, to denote sets of linear constraints
which should be interpreted as the conjunction of each element in the set. An
assignment σ over a tuple of variables x̄ is a mapping from x̄ to Z. We write
σ |= ϕ to denote that σ(ϕ) is satisfiable.

The following definition presents our notion of cost expression, which char-
acterizes syntactically the kind of expressions we deal with.

Definition 1 (cost expression). Cost expressions are symbolic expressions
which can be generated using this grammar:

e::= n | nat(l) | e+ e | e ∗ e | loga(nat(l) + 1) | nat(l)n | anat(l) | max(S)
where n, a ∈ N

+ and a ≥ 2, l is a linear expression, S is a non empty set of cost
expressions, nat : Z → N is defined as nat(v)=max({v, 0}). Given an assignment
σ and a basic cost expression e, σ(e) is the result of evaluating e w.r.t. σ.

Observe that linear expressions are always wrapped by nat, as we will explain
below in the example. Logarithmic expressions contain a linear subexpression
plus “1” which ensures that they cannot be evaluated to loga(0). By ignoring
syntactic differences, cost analyzers produce cost expressions in the above form.

It is customary to analyze programs (or methods) w.r.t. some initial context
constraints. Essentially, given a methodm(x̄), the considered context constraints
ϕ describe conditions on the (sizes of) initial values of x̄. With such information, a
cost analyzer outputs a cost function fm(x̄s) = 〈e, ϕ〉 where e is a cost expression
and x̄s denotes the data sizes of x̄. Thus, fm is a function of the input data
sizes that provides bounds on the resource consumption of executing m for any
concrete value of the input data x̄ such that their sizes satisfy ϕ. Note that ϕ is
basically a set of linear constraints over x̄s. We use CF to denote the set of all
possible cost functions. Let us see an example.

Example 1. Figure 1 shows a Java program which we use as running example.
It is interesting because it shows the different complexity orders that can be
obtained by a cost analyzer. We analyze this program using the COSTA system,
and selecting the number of executed bytecode instructions as cost model. Each
Java instruction is compiled to possibly several corresponding bytecode instruc-
tions but, since this is not a concern of this paper, we will skip explanations
about the constants in the upper bound function and refer to [2] for details.

Given the context constraint {n > 0}, the COSTA system outputs the upper
bound cost function for method m which is shown at the bottom of the figure.
Since m contains two recursive calls, the complexity is exponential on n, namely
we have a factor 2nat(n). At each recursive call, the method f is invoked and
its cost (plus a constant value) is multiplied by 2nat(n). In the code of f, we
can observe that the while loop has a logarithmic complexity because the loop
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void m(int n, int a, int b) {
if (n > 0) {

m(n - 1, a, b);
m(n - 2, a, b);
f(a, b, n);

}
}

void f(int a, int b, int n) {
int acc = 0;
while (n > 0) {

n = n/2; acc++;
}
for (int i = 0; i < a; i++)

for (int j = 0; j < b; j++) acc++;
}

Upper Bound Cost Function

m(n, a, b) = 2nat(n)∗(31+ (8∗ log(1+nat(2∗n−1))
︸ ︷︷ ︸

while loop

+ nat(a)∗(10+6∗nat(b)
︸ ︷︷ ︸

nested loop

)))

︸ ︷︷ ︸

cost of f
︸ ︷︷ ︸

cost of recursive calls

+ 3∗2nat(n)

︸ ︷︷ ︸

base cases

Fig. 1. Running example and upper bound obtained by COSTA on the number
of executed bytecode instructions.

counter is divided by 2 at each iteration. This cost is accumulated with the
cost of the second nested loop, which has a quadratic complexity Finally, the
cost introduced by the base cases of m is exponential since, due to the double
recursion, there is an exponential number of computations which correspond to
base cases. Each such computation requires a maximum of 3 instructions.

The most relevant point in the upper bound is that all variables are wrapped
by nat in order to capture that the corresponding cost becomes zero when the
expression inside the nat takes a negative value. In the case of nat(n), the nat is
redundant since thanks to the context constraint we know that n > 0. However,
it is required for variables a and b since, when they take a negative value, the
corresponding loops are not executed and thus their costs have to become zero
in the formula. Essentially, the use of nat allows having a compact cost function
instead of one defined by multiple cases. Some cost analyzers generate cost func-
tions which contain expressions of the form max({Exp, 0}), which as mentioned
above is equivalent to nat(Exp). We prefer to keep the max operator separate
from the nat operator since that will simplify their handling later. 2

3 Comparison of Cost Functions

In this section, we state the problem of comparing two cost functions represented
as cost expressions. As we have seen in Ex. 1, a cost function 〈e, ϕ〉 for a method
m is a single cost expression which approximates the cost of any possible execu-
tion of m which is consistent with the context constraints ϕ. This can be done
by means of nat subexpressions which encapsulate conditions on the input data
sizes in a single cost expression. Besides, cost functions often contain max sub-
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expressions, e.g., 〈max({nat(x) ∗ nat(z), nat(y) ∗ nat(z)}), true〉 which represent
the cost of disjunctive branches in the program (e.g., the first sub-expression
might correspond to the cost of a then-branch and the second one the cost of
the else-branch of a conditional statement).

Though nat and max expressions allow building cost expressions in a compact
format, when comparing cost functions it is useful to expand cost expressions into
sets of simpler expressions which altogether have the same semantics. This, on
one hand, allows handling simpler syntactic expressions and, on the other hand,
allows exploiting stronger context constraints. This expansion is performed in
two steps. In the first one we eliminate all max expressions. In the second one we
eliminate all nat expressions. The following definition transforms a cost function
into a set of max-free cost functions which cover all possible costs comprised in
the original function. We write e[a 7→ b] to denote the expression obtained from
e by replacing all occurrences of subexpression a with b.

Definition 2 (max-free operator). Let 〈e, ϕ〉 be a cost function. We define
the max-free operator τmax : 2

CF 7→ 2CF as follows: τmax(M) = (M − {〈e, ϕ〉}) ∪
{〈e[max(S) 7→ e′], ϕ〉, 〈e[max(S) 7→ max(S′), ϕ〉}, where 〈e, ϕ〉 ∈ M contains a
subexpression of the form max(S), e′ ∈ S and S′ = S − {e′}.

In the above definition, each application of τmax takes care of taking out one
element e′ inside a max subexpression by creating two non-deterministic cost
functions, one with the cost of such element e′ and another one with the re-
maining ones. This process is iteratively repeated until the fixed point is reached
and there are no more max subexpressions to be transformed. The result of
this operation is a max-free cost function, denoted by fpmax(M). An important
observation is that the constraints ϕ are not modified in this transformation.

Once we have removed all max-subexpressions, the following step consists in
removing the nat-subexpressions to make two cases explicit. One case in which
the subexpression is positive, hence the nat can be safely removed, and another
one in which it is negative or zero, hence the subexpression becomes zero. As
notation, we use capital letters to denote fresh variables which replace the nat

subexpressions.

Definition 3 (nat-free operator). Let 〈e, ϕ〉 be a max-free cost function. We
define the nat-free operator τnat : 2CF 7→ 2CF as follows: τnat(M) = (M −
{〈e, ϕ〉})∪{〈ei, ϕi〉 | ϕ∧ϕi is satisfiable , 1 ≤ i ≤ 2}, where 〈e, ϕ〉 ∈M contains
a subexpression nat(l), ϕ1 = ϕ ∪ {A = l, A > 0}, ϕ2 = ϕ ∪ {l ≤ 0}, with A a
fresh variable, and e1 = e[nat(l) 7→ A], e2 = e[nat(l) 7→ 0].

In contrast to the max elimination transformation, the elimination of nat subex-
pressions modifies the set of linear constraints by adding the new assignments
of fresh variables to linear expressions and the fact that the subexpression is
greater than zero or when it becomes zero. The above operator τnat is applied
iteratively until there are new terms to transform. The result of this operation
is a nat-free cost function, denoted by fpnat(M). For instance, for the cost func-
tion 〈nat(x) ∗ nat(z−1), {x > 0}〉, fpnat returns the set composed of the following
nat-free cost functions:
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〈A ∗B, {A = x,A > 0, B = z−1, B > 0}〉 and 〈A ∗ 0, {A = x,A > 0, z−1 ≤ 0}〉

In the following, given a cost function f , we denote by τ(f) the set fpnat(fpmax({f}))
and we say that each element in fpnat(fpmax({f})) is a flat cost function.

Example 2. Let us consider the cost function in Ex. 1. Since such cost func-
tion contains the context constraint n>0, then the subexpressions nat(n) and
nat(2∗n−1) are always positive. By assuming that fpnat replaces nat(n) by A

and nat(2∗n−1) by B, only those linear constraints containing ϕ = {n > 0, A =
n,A > 0, B = 2∗n−1, B > 0} are satisfiable (the remaining cases are hence not
considered). We obtain the following set of flat functions:

(1) 〈2A∗(31+8∗ log(1+B)+C∗(10+6∗D))+3∗2A, ϕ1 = ϕ ∪ {C=a, C > 0, D=b,D>0}〉
(2) 〈2A∗(31+8∗ log(1+B))+3∗2A, ϕ2 = ϕ ∪ {a≤0, D=b,D>0}〉
(3) 〈2A∗(31+8∗ log(1+B)+C∗10+3∗2A, ϕ3 = ϕ ∪ {C=a,C > 0, b≤0}〉
(4) 〈2A∗(31+8∗ log(1+B))+3∗2A, ϕ4 = ϕ ∪ {a≤0, b≤0}〉 2

In order to compare cost functions, we start by comparing two flat cost functions
in Def. 4 below. Then, in Def. 5 we compare a flat function against a general,
i.e., non-flat, one. Finally, Def. 6 allows comparing two general functions.

Definition 4 (smaller flat cost function in context). Given two flat cost
functions 〈e1, ϕ1〉 and 〈e2, ϕ2〉, we say that 〈e1, ϕ1〉 is smaller than or equal to
〈e2, ϕ2〉 in the context of ϕ2, written 〈e1, ϕ1〉E〈e2, ϕ2〉, if for all assignments σ
such that σ |= ϕ1 ∪ ϕ2 it holds that σ(e1) ≤ σ(e2).

Observe that the assignments in the above definition must satisfy the conjunc-
tion of the constraints in ϕ1 and in ϕ2. Hence, it discards the values for which
the constraints become incompatible. An important point is that Def. 4 allows
comparing pairs of flat functions. However, the result of such comparison is weak
in the sense that the comparison is only valid in the context of ϕ2. In order to
determine that a flat function is smaller than a general function for any context
we need to introduce Def. 5 below.

Definition 5 (smaller flat cost function). Given a flat cost function 〈e1, ϕ1〉
and a (possibly non-flat) cost function 〈e2, ϕ2〉, we say that 〈e1, ϕ1〉 is smaller
than or equal to 〈e2, ϕ2〉, written 〈e1, ϕ1〉 � 〈e2, ϕ2〉, if ϕ1 |= ϕ2 and for all
〈ei, ϕi〉 ∈ τ(〈e2, ϕ2〉) it holds that 〈e1, ϕ1〉E〈ei, ϕi〉.

Note that Def. 5 above is only valid when the context constraint ϕ2 is more
general, i.e., less restrictive than ϕ1. This is required because in order to prove
that a function is smaller than another one it must be so for all assignments which
are satisfiable according to ϕ1. If the context constraint ϕ2 is more restrictive
than ϕ1 then there are valid input values for 〈e1, ϕ1〉 which are undefined for
〈e2, ϕ2〉. For example, if we want to check whether the flat cost function (1) in
Ex. 2 is smaller than another one f which has the context constraint {n > 4},
the comparison will fail. This is because function f is undefined for the input
values 0 < n ≤ 4. This condition is also required in Def. 6 below, which can be
used on two general cost functions.
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Definition 6 (smaller cost function). Consider two cost functions 〈e1, ϕ1〉
and 〈e2, ϕ2〉 such that ϕ1 |= ϕ2. We say that 〈e1, ϕ1〉 is smaller than or equal to
〈e2, ϕ2〉 iff for all 〈e′1, ϕ

′
1〉 ∈ τ(〈e1, ϕ1〉) it holds that 〈e′1, ϕ

′
1〉 � 〈e2, ϕ2〉.

In several applications of resource usage analysis, we are not only interested
in knowing that a function is smaller than or equal than another. Also, if the
comparison fails, it is useful to know which are the pairs of flat functions for which
we have not been able to prove them being smaller, together with their context
constraints. This can be useful in order to strengthen the context constraint of
the left hand side function or to weaken that of the right hand side function.

4 Inclusion of Cost Functions

It is clearly not possible to try all assignments of input variables in order to prove
that the comparison holds as required by Def. 4 (and transitively by Defs. 5 and
6). In this section, we aim at defining a practical technique to syntactically
check that one flat function is smaller or equal than another one for all valid
assignments, i.e., the relation E of Def. 4. The whole approach is defined over
flat cost functions since from it one can use Defs. 5 and 6 to apply our techniques
on two general functions.

The idea is to first normalize cost functions so that they become easier to
compare by removing parenthesis, grouping identical terms together, etc. Then,
we define a series of inclusion schemas which provide sufficient conditions to
syntactically detect that a given expression is smaller or equal than another one.
An important feature of our approach is that when expressions are syntacti-
cally compared we compute an approximated difference (denoted adiff) of the
comparison, which is the subexpression that has not been required in order to
prove the comparison and, thus, can still be used for subsequent comparisons.
The whole comparison is presented as a fixed point transformation in which we
remove from cost functions those subexpressions for which the comparison has
already been proven until the left hand side expression becomes zero, in which
case we succeed to prove that it is smaller or equal than the other, or no more
transformations can be applied, in which case we fail to prove that it is smaller.
Our approach is safe in the sense that whenever we determine that a function is
smaller than another one this is actually the case. However, since the approach
is obviously approximate, as the problem is undecidable, there are cases where
one function is actually smaller than another one, but we fail to prove so.

4.1 Normalization Step

In the sequel, we use the term basic cost expression to refer to expressions of the
form n, loga(A+1), An, al. Furthermore, we use the letter b, possibly subscripted,
to refer to such cost expressions.

Definition 7 (normalized cost expression). A normalized cost expression
is of the form Σn

i=1ei such that each ei is a product of basic cost expressions.
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Note that each cost expression as defined above can be normalized by repeatedly
applying the distributive property of multiplication over addition in order to get
rid of all parentheses in the expression. We also assume that products which are
composed of the same basic expressions (modulo constants) are grouped together
in a single expression which adds all constants.

Example 3. Let us consider the cost functions in Ex. 2. Normalization results in
the following cost functions:

(1)n 〈34∗2A+8∗ log2(1+B)∗2A+10∗C∗2A+6∗C∗D∗2A,
ϕ1 = {A=n,A>0, B=2∗n−1, B>0, C=a,C > 0, D=b,D>0}〉

(2)n 〈34∗2A+8∗ log2(1+B)∗2A,
ϕ2 = {A=n,A>0, B=2∗n−1, B>0, a≤0, D=b,D>0}〉

(3)n 〈34∗2A+8∗ log2(1+B)∗2A+10∗C∗2A,
ϕ3 = {A=n,A>0, B=2∗n−1, B>0, C=a,C > 0, b≤0}〉

(4)n 〈34∗2A+8∗ log2(1+B)∗2A,
ϕ4 = {A=n,A>0, B=2∗n−1, B>0, a≤0, b≤0}〉

2

Since e1 ∗ e2 and e2 ∗ e1 are equal, it is convenient to view a product as the set
of its elements (i.e., basic cost expressions). We use Pb to denote the set of all
products (i.e., sets of basic cost expressions) and M to refer to one product of
Pb. Also, since M1 +M2 and M2 +M1 are equal, it is convenient to view the
sum of products as the set of its elements (its products). We use PM to denote
the set of all sums of products and S to refer to one sum of products of PM.
Therefore, a normalized cost expression is a set of sets of basic cost expressions.

Example 4. For the normalized cost expressions in Ex. 3, we obtain the following
set representation:

(1)s 〈{{34, 2A}, {8, log2(1+B), 2A}, {10, C, 2A}, {6, C,D, 2A}},
ϕ1 = {A=n,A>0, B=2∗n−1, B>0, C=a, C > 0, D=b,D>0}〉

(2)s 〈{{34, 2A}, {8, log2(1+B), 2A}},
ϕ2 = {A=n,A>0, B=2∗n−1, B>0, a≤0, D=b,D>0}〉

(3)s 〈{{34, 2A}, {8, log2(1+B), 2A}, {10, C, 2A}},
ϕ3 = {A=n,A>0, B=2∗n−1, B>0, C=a, C > 0, b≤0}〉

(4)s 〈{{34, 2A}, {8, log2(1+B), 2A}},
ϕ4 = {A=n,A>0, B=2∗n−1, B>0, a≤0, b≤0}〉

2

4.2 Product Comparison

We start by providing sufficient conditions which allow proving the E relation
on the basic cost expressions that will be used later to compare products of
basic cost expressions. Given two basic cost expressions e1 and e2, the third
column in Table 1 specifies sufficient, linear conditions under which e1 is smaller
or equal than e2 in the context of ϕ (denoted as e1 ≤ϕ e2). Since the conditions
under which ≤ϕ holds are over linear expressions, we can rely on existing linear
constraint solving techniques to automatically prove them. Let us explain some
of entries in the table. E.g., verifying that An ≤ ml is equivalent to verifying
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e1 e2 e1 ≤ϕ e2 adiff

n n′ n ≤ n′ 1

n loga(A+ 1) ϕ |= {an ≤ A+ 1} 1

n Am m > 1 ∧ ϕ |= {n ≤ A} Am−1

n ml m > 1 ∧ ϕ |= {n ≤ l} ml−n

l1 l2 l2 6∈ N
+, ϕ |= {l1≤l2} 1

l An n > 1 ∧ ϕ |= {l ≤ A} An−1

l nl′ n > 1 ∧ ϕ |= {l ≤ l′} nl′−l

loga(A+1) l l 6∈ N
+, ϕ |= {A+ 1 ≤ l} 1

loga(A+1) logb(B+1) a ≥ b ∧ ϕ |= {A ≤ B} 1

loga(A+1) Bn n > 1 ∧ ϕ |= {A+ 1 ≤ B} Bn−1

loga(A+1) nl n > 1 ∧ ϕ |= {l > 0, A+ 1 ≤ l} nl−(A+1)

An Bm n > 1 ∧m > 1 ∧ n ≤ m ∧ ϕ |= {A ≤ B} Bm−n

An ml m > 1 ∧ ϕ |= {n ∗A ≤ l} ml−n∗A

nl ml′ n ≤ m ∧ ϕ |= {l ≤ l′} ml′−l

Table 1. Comparison of basic expressions e1 ≤ϕ e2

logm(An) ≤ logm(ml), which in turn is equivalent to verifying that n∗logm(A) ≤
l when m > 1 (i.e., m ≥ 2 since m is an integer value). Therefore we can verify
a stronger condition n ∗A ≤ l which implies n ∗ logm(A) ≤ l, since logm(A) ≤ A

when m ≥ 2. As another example, in order to verify that l ≤ nl
′

, it is enough to
verify that logn(l) ≤ l′ when n > 1, which can be guaranteed if l ≤ l′.

The “part” of e2 which is not required in order to prove the above rela-
tion becomes the approximated difference of the comparison operation, denoted
adiff(e1, e2). An essential idea in our approach is that adiff is a cost expression
in our language and hence we can transitively apply our techniques to it. This
requires having an approximated difference instead of the exact one. For in-
stance, when we compare A ≤ 2B in the context {A ≤ B}, the approximated
difference is 2B−A instead of the exact one 2B −A. The advantage is that we do
not introduce the subtraction of expressions, since that would prevent us from
transitively applying the same techniques.

When we compare two products M1, M2 of basic cost expressions in a
context constraint ϕ, the basic idea is to prove the inclusion relation ≤ϕ for
every basic cost expression in M1 w.r.t. a different element in M2 and at each
step accumulate the difference in M2 and use it for future comparisons if needed.

Definition 8 (product comparison operator). Given 〈M1, ϕ1〉, 〈M2, ϕ2〉
in Pb we define the product comparison operator τ∗ : (Pb,Pb) 7→ (Pb,Pb) as
follows: τ∗(M1,M2) = (M1−{e1},M2−{e2}∪{adiff(e1, e2)}) where e1 ∈ M1,
e2 ∈ M2, and e1 ≤ϕ1∧ϕ2

e2.

In order to compare two products, first we apply the above operator τ∗ iteratively
until there are no more terms to transform. In each iteration we pick e1 and e2
and modify M1 and M2 accordingly, and then repeat the process on the new
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sets. The result of this operation is denoted fp∗(M1,M2). This process is finite
because the size of M1 strictly decreases at each iteration.

Example 5. Let us consider the product {8, log2(1+B), 2A} which is part of (1)s
in Ex. 4. We want to prove that this product is smaller or equal than the following
one {7, 23∗B} in the context ϕ = {A ≤ B−1, B≥10}. This can be done by
applying the τ∗ operator three times. In the first iteration, since we know by
Table 1 that log2(1+B) ≤ϕ 23∗B and the adiff is 22∗B−1, we obtain the new
sets {8, 2A} and {7, 22∗B−1}. In the second iteration, we can prove that 2A ≤ϕ

22∗B−1, and add as adiff 22∗B−A−1. Finally, it remains to be checked that 8 ≤ϕ

22∗B−A−1. This problem is reduced to checking that ϕ |= 8 ≤ 2∗B−A−1, which
it trivially true. 2

The following lemma states that if we succeed to transform M1 into the empty
set, then the comparison holds. This is what we have done in the above example.

Lemma 1. Given 〈M1, ϕ1〉, 〈M2, ϕ2〉 where M1,M2 ∈ Pb and for all e ∈ M1

it holds that ϕ1 |= e ≥ 1. If fp∗(M1,M2) = (∅, ) then 〈M1, ϕ1〉E〈M2, ϕ2〉.

Note that the above operator is non-deterministic due to the (non-deterministic)
choice of e1 and e2 in Def. 8. Thus, the computation of fp∗(M1,M2) might not
lead directly to (∅, ). In such case, we can backtrack in order to explore other
choices and, in the limit, all of them can be explored until we find one for which
the comparison succeeds.

4.3 Comparison of Sums of Products

We now aim at comparing two sums of products by relying on the product
comparison of Sec. 4.2. As for the case of basic cost expressions, we are interested
in having a notion of approximated adiff when comparing products. The idea is
that when we want to prove k1∗A ≤ k2∗B and A ≤ B and k1 and k2 are constant
factors, we can leave as approximated difference of the product comparison the
product (k2−k1)∗B, provided k2−k1 is greater or equal than zero. As notation,
given a product M, we use constant(M) to denote the constant factor in M,
which is equals to n if there is a constant n ∈ M with n ∈ N

+ and, otherwise,
it is 1. We use adiff(M1,M2) to denote constant(M2)− constant(M1).

Definition 9 (sum comparison operator). Given 〈S1, ϕ1〉 and 〈S2, ϕ2〉, where
S1,S2 ∈ PM, we define the sum comparison operator τ+ : (PM,PM) 7→ (PM,PM)
as follows: τ+(S1,S2) = (S1−{M1}, (S2−{M2})∪A) iff fp∗(M1,M2) = (∅, )
where:

- A = { } if adiff(M1,M2) ≤ 0;
- otherwise, A = (M2 − {constant(M2)}) ∪ {adiff(M1,M2)}.

In order to compare sums of products, we apply the above operator τ+ iteratively
until there are no more elements to transform. As for the case of products, this
process is finite because the size of S1 strictly decreases in each iteration. The
result of this operation is denoted by fp+(S1,S2).
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Example 6. Let us consider the sum of products (3)s in Ex. 4 together with
S = {{50, C, 2B}, {9, D2, 2B}} and the context constraint ϕ = {1+B≤D}. We
can prove that (3)s ES by applying τ+ three times as follows:

1. τ+((3)s,S) = ((3)s − {{34, 2A}},S ′), where S ′ = {{16, C, 2B}, {9, D2, 2B}}.
This application of the operator is feasible since fp∗({34, 2

A}, {50, C, 2B}) =
(∅, ) in the context ϕ3∧ϕ, and the difference constant part of such compar-
ison is 16.

2. Now, we perform one more iteration of τ+ and obtain as result τ+((3)s −
{{34, 2A}},S ′) = ((3)s−{{34, 2A}, {10, C, 2A}},S ′′), where S ′′ = {{6, C, 2B},
{9, D2, 2B}}. Observe that in this case fp∗({10, C, 2

A}, {{16, C, 2B}) = (∅, ).
3. Finally, one more iteration of τ+ on the above sum of products, gives (∅,S ′′′)

as result, where S ′′′ = {{6, C, 2B}, {1, D2, 2B}}.

In this last iteration we have used the fact that {1+B≤D} ∈ ϕ in order to prove
that fp∗({8, log2(1+B), 2A}, {9, D2, 2B}) = (∅, ) within the context ϕ3 ∧ ϕ. 2

Theorem 1. Let 〈S1, ϕ1〉, 〈S2, ϕ2〉 be two sum of products such that for all
M ∈ S1, e ∈ M it holds that ϕ1 |= e ≥ 1. If fp+(S1,S2) = (∅, ) then
〈S1, ϕ1〉E〈S2, ϕ2〉.

Example 7. For the sum of products in Ex. 6, we get fp+((3)s,S) = (∅,S ′′′).
Thus, according to the above theorem, it holds that 〈(3)s, ϕ3〉E〈S, ϕ〉. 2

4.4 Composite Comparison of Sums of Products

Clearly the previous schema for comparing sums of products is not complete.
There are cases like the comparison of {{A3}, {A2}, {A}} w.r.t. {{A6}} within
the context constraint A > 1 which cannot be proven by using a one-to-one
comparison of products. This is because a single product comparison would
consume the whole expression A6. We try to cover more cases by providing a
composite comparison schema which establishes when a single product is greater
than the addition of several products.

Definition 10 (sum-product comparison operator). Consider 〈S1, ϕ1〉 and
〈M2, ϕ2〉, where S1 ∈ PM, M2 ∈ Pb and for all M ∈ S1 it holds that ϕ1 |= M >

1. Then, we define the sum-product comparison operator τ(+,∗) : (PM,Pb) 7→
(PM,Pb) as follows: τ(+,∗)(S1,M2) = (S1−{M′

2},M
′′
2), where fp∗(M

′
2,M2) =

(∅,M′′
2).

The above operator τ(+,∗) is applied while there are new terms to transform. Note
that the process is finite since the size of S1 is always decreasing. We denote by
fp(+,∗)(S1,M2) the result of iteratively applying τ(+,∗).

Example 8. By using the sum-product operator we can transform the pair ({{A3},
{A2}, {A}}, {A6}) into (∅, ∅) in the context constraint ϕ = {A > 1}. To this end,
we apply τ(+,∗) three times. In the first iteration, fp∗({A

3}, {A6}) = (∅, {A3}).
In the second iteration, fp∗({A

2}, {A3}) = (∅, {A}). Finally in the third iteration
fp∗({A}, {A}) = (∅, ∅). 2
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When using the sum-product comparison operator to compare sums of prod-
ucts, we can take advantage of having an approximated difference similar to the
one defined in Sec. 4.3. In particular, we define the approximated difference of
comparing S and M, written adiff(S,M), as constant(M)−constant(S), where
constant(S)=

∑
M′∈S

constant(M′). Thus, if we compare {{A3}, {A2}, {A}} is
smaller or equal than {4, A6}, we can have as approximated difference {A6},
which is useful to continue comparing further summands. As notation, we use
PS to denote the set of all sums of products and Ss to refer one element.

Definition 11 (general sum comparison operator). Let us consider 〈Ss, ϕ〉
and 〈S2, ϕ

′〉, where Ss ∈ PS and S2 ∈ PM. We define the general sum com-
parison operator µ+ : (PS ,PM) 7→ (PS ,PM) as follows: µ+(Ss,S2) = (Ss −
{S1}, (S2−{M})∪A), where fp(+,∗)(S1,M) = (∅, ) and A = { } if adiff(S1,M) ≤
0; otherwise A = (M−{constant(M)}) ∪ {adiff(S1,M)}.

Similarly as we have done in definitions above, the above operator µ+ is applied
iteratively while there are new terms to transform. Since the cardinality of Ss

decreases in each step the process is finite. We denote by fpg

+(Ss,S2) to the result
of applying the above iterator until there are no sets to transform.

Observe that the above operator does not replace the previous sum compara-
tor operator in Def. 9 since it sometimes can be of less applicability since fp(+,∗)

requires that all elements in the addition are strictly greater than one. Instead,
it is used in combination with Def. 9 so that when we fail to prove the com-
parison by using the one-to-one comparison we attempt with the sum-product
comparison operator above.

In order to apply the general sum comparison operator, we seek for partitions
in the original S which meet the conditions in the definition above.

Theorem 2 (composite inclusion). Let 〈S1, ϕ1〉, 〈S2, ϕ2〉 be two sum of prod-
ucts such that for all M′ ∈ S1, e ∈ M′ it holds ϕ1 |= e>1. Let Ss be a partition
of S1. If fp

g

+(Ss,S2) = (∅, ) then 〈S1, ϕ1〉E〈S2, ϕ2〉.

5 Implementation and Experimental Evaluation

We have implemented our technique and it can be used as a back-end of ex-
isting non-asymptotic cost analyzers for average, lower and upper bounds (e.g.,
[8,2,10,4,5]), and regardless of whether it is based on the approach to cost anal-
ysis of [12] or any other. Currently, it is integrated within the COSTA Sys-
tem, and it can be tried out through its web interface which is available from
http://costa.ls.fi.upm.es.

We first illustrate the application of our method in resource usage verification
by showing the working mode of COSTA through its Eclipse plugin. Figure 2
shows a method which has been annotated to be analyzed (indicated by the an-
notation @costaAnalyze true) and its resulting upper bound compared against
the cost function written in the assertion @costaCheck. The output of COSTA
is shown in the Costa view (bottom side of the Figure). There, the upper bound

12



Fig. 2. Screenshot of the COSTA plugin for Eclipse, showing how annotations
are used to interact with COSTA

inferred by COSTA is displayed, together with the result of the comparison with
the user’s assertion. Besides, the verification of the upper bound is shown in the
same line where the annotation is as a marker in the left side of the editor. If
the verification fails, a warning marker is shown, instead of the star-like marker
of Figure 2. Thus, by annotating the methods of interest with candidate upper
bounds, it is possible to verify the resource usage of such methods, and to mark
those methods that do not meet their resource usage specification.

In Table 2, we have performed some experiments which aim at providing
some information about the accuracy and the efficiency of our technique. The
first seven benchmark programs correspond to examples taken from the JOlden
benchmark suite [11], the next two ones from the experiments in [1] and the last
one is our running example. COSTA infers the upper bound cost functions for
them which are shown in the second column of the table. All execution times
shown are in milliseconds and have been computed as the average time of ten
executions. The environment were the experiments were run was Intel Core2
Duo 1.20 GHz with 2 processors, and 4 GB of RAM.

The first column is the name of the benchmark. The second column is the
expresion of the cost function. The next two columns show the time taken by
our implementation of the comparison approach presented in the paper in two
different experiments which we describe below. The next two columns include the
term size of the cost function inferred by COSTA and normalized as explained
in Section 4, and the term size of the product of the cost function by itself. The
next two columns include the ratio between size and time; those are estimations
of the number of terms processed by milisecond in the comparison. We use CF
to refer to the cost function computed by COSTA.
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Bench. Cost Function T1 T2 Size1 Size2 Size/T1 Size/T2

bH 128 + 96 ∗ nat(x) 0 0.2 6 11 N/A N/A

treeAdd 4 + (4 ∗ nat(x) + 1) + 40 ∗ 2nat(y−1) 8 18 11 41 1.40 2.28
biSort 16 + (4 ∗ nat(x) + 1) ∗ nat(y − 1) 15 39 9 33 0.60 0.85

health 28 ∗ (4nat(x−1)
− 1)/3 + 28 ∗ 4nat(x−1) 7 23 21 115 3.00 5.00

voronoi 20 ∗ nat(2 ∗ x − 1) 2 5 3 5 1.50 1.00
mst max(12 + 4 ∗ nat(1 + x) 96 222 49 241 0.51 1.09

+nat(1 + x) ∗ (20 + 4 ∗ nat(1/4 ∗ x))
+16 ∗ nat(1 + x) ∗ nat(1 + x) + 8 ∗ nat(1 + x),
4 + max(16 + 4 ∗ nat(1 + x)
+nat(1 + x) ∗ (20 + 4 ∗ nat(1/4 ∗ x))
+16 ∗ nat(1 + x) ∗ nat(1 + x) + 16 ∗ nat(1 + x),
20 + 4 ∗ nat(1 + x)+
+nat(1 + x) ∗ (20 + 4 ∗ nat(1/4 ∗ x))+
4 ∗ nat(1/4 ∗ x)))

em3d 93 + 4 ∗ nat(t) + 4 ∗ nat(y)+ 54 113 19 117 0.35 1.04
nat(t − 1) ∗ (28 + 4 ∗ nat(y)) + 4 ∗ nat(t)+
4 ∗ nat(y) + nat(t − 1) ∗ (28 + 4 ∗ nat(y))+
4 ∗ nat(y)

multiply 9 + nat(x) ∗ (16 + 8 ∗ log2(1 + nat(2 ∗ x − 3))) 10 24 14 55 1.40 2.29
evenDigits 49 + (nat(z) ∗ (37 + (nat(y) ∗ (32 + 27 ∗ nat(y)) 36 94 29 195 0.81 2.07

+27 ∗ nat(y))) + nat(y) ∗ (32 + 27 ∗ nat(y))
+27 ∗ nat(y))

running 2nat(x)
∗ (31 + (8 ∗ log2(1 + nat(2 ∗ x − 1))+ 40 165 34 212 0.85 1.28

+nat(y) ∗ (10 + 6 ∗ nat(z)))) + 3 ∗ 2nat(x)

Table 2. Experiments in Cost Function Comparison

T1 Time taken by the comparison CF � rev(CF ), where rev(CF ) is just the
reversed version of CF . I.e., rev(x + y + 1) = 1 + x + y. The size of the
expressions involved in the comparison is shown in the fifth column of the
table (Size1).

T2 Time taken by the comparison CF + CF � CF ∗ CF , assuming that CF
takes at least the value 2 for all input values. In this case, the size of the
expression grows considerably and hence the comparison takes a longer time
than the previous case. The size of the largest expression in this case is shown
in the sixth column of the table (Size2).

In all cases, we have succeeded to prove that the comparison holds. Ignoring the
first benchmark, that took a negligible time, the ratio between size and time and
falls in a narrow interval (1 or 2 terms processed by milisecond). Interestingly,
for each one of the benchmarks (except voronoi), that ratio increases with term
size, implying that the number of terms processed by milisecond is higher in
more complex expressions. However, these performance measurements should
be verified with a larger number of case studies, to verify how it varies with the
size of the input. We leave that task as further work. In any case, we believe that
our preliminary experiments indicate that our approach is sufficiently precise in
practice and that the comparison times are acceptable.

6 Other Approaches and Related Work

In this section, we discuss other possible approaches to handle the problem of
comparing cost functions. In [7], an approach for inferring non-linear invariants
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using a linear constraints domain (such as polyhedra) has been introduced. The
idea is based on a saturation operator, which lifts linear constraints to non-
linear ones. For example, the constraint Σaixi = a would impose the constraint
ΣaiZxiu = au for each variable u. Here Zxiu is a new variable which corresponds
to the multiplication of xi by u. This technique can be used to compare cost
functions, the idea is to start by saturating the constraints and, at the same
time, converting the expressions to linear expressions until we can use a linear
domain to perform the comparison. For example, when we introduce a variable
Zxiu, all occurrences of xiu in the expressions are replaced by Zxiu. Let us see
an example where: in the first step we have the two cost functions to compare;
in the second step, we replace the exponential with a fresh variable and add the
corresponding constraints; in the third step, we replace the product by another
fresh variable and saturate the constraints:

w · 2x ≥ 2y {x ≥ 0, x ≥ y, w ≥ 0}
w · Z2x ≥ Z2y {x ≥ 0, x ≥ y, Z2x ≥ Z2y}
Zw·2x ≥ Z2y {x ≥ 0, x ≥ y, Z2x ≥ Z2y , Zw·2x ≥ Z2y}

Now, by using a linear constraint domain, the comparison can be proved.
We believe that the saturation operation is very expensive compared to our
technique while it does not seem to add significant precision.

Another approach for checking that e1 � e2 in the context of a given context
constraint ϕ is to encode the comparison e1 � e2 as a Boolean formula that
simulates the behavior of the underlying machine architecture. The unsatisfia-
bility of the Boolean formula can be checked using SAT solvers and implies that
e1 � e2. The drawback of this approach is that it requires fixing a maximum
number of bits for representing the value of each variable in ei and the values of
intermediate calculations. Therefore, the result is guaranteed to be sound only
for the range of numbers that can be represented using such bits. On the positive
side, the approach is complete for this range. In the case of variables that corre-
spond to integer program variables, the maximum number of bits can be easily
derived from the one of the underlying architecture. Thus, we expect the method
to be precise. However, in the case of variables that correspond to the size of
data-structures, the maximum number of bits is more difficult to estimate.

Another approach for this problem is based on numerical methods since our
problem is analogous to proving whether 0 � b − fm in the context φb. There
are at least two numerical approaches to this problem. The first one is to find
the roots of b − fm, and check whether those roots satisfy the constraints φb.
If they do not, a single point check is enough to solve the problem. This is
because, if the equation is verified at one point, the expressions are continuous,
and there is no sign change since the roots are outside the region defined by
φb, then we can ensure that the equation holds for all possible values satisfying
φb. However, the problem of finding the roots with multiple variables is hard in
general and often not solvable. The second approach is based on the observation
that there is no need to compute the actual values of the roots. It is enough
to know whether there are roots in the region defined by φb. This can be done
by finding the minimum values of expression b − fm, a problem that is more
affordable using numerical methods [9] . If the minimum values in the region
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defined by φb are greater than zero, then there are no roots in that region. Even
if those minimum values are out of the region defined by φb or smaller than zero,
it is not necessary to continue trying to find their values. If the algorithm starts
to converge to values out of the region of interest, the comparison can be proven
to be false. One of the open issues about using numerical methods to solve our
problem is whether or not they will be able to handle cost functions output from
realistic programs and their performance. We have not explored these issues yet
and they remain as subject of future work.

7 Conclusions

In conclusion, we have proposed a novel approach to comparing cost functions
which is relatively efficient and powerful enough for performing useful compar-
isons of cost functions. Making such comparisons automatically and efficiently is
essential for any application of automatic cost analysis. Our approach could be
combined with more heavyweight techniques, such as those based on numerical
methods, in those cases where our approach is not sufficiently precise.
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