
Termination Analysis of Java Bytecode⋆

E. Albert1, P. Arenas1, M. Codish2,
S. Genaim3, G. Puebla3, and D. Zanardini3

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

3 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Introduction: The state of the art in termination analysis includes advanced
techniques developed for logic and functional programming [12, 4, 9, 11, 10] and
imperative languages [2, 5, 8, 6, 10], as well as for term rewriting systems [10]. In
[6, 5] tools for proving termination of large industrial code are presented. How-
ever, termination of low-level languages, such as Java bytecode, has received little
attention. In some situations, such as with mobile code, the user only has access
to compiled code which may be obtained from an untrusted party. Termination
analysis may help avoid, for example, denial of service attacks. Such analysis
must be applied directly on the low-level code. Java bytecode [13] is widely used
in this context due to its security features and platform-independence.

Termination analyses are typically based on ranking functions, which map
program states to the elements of a well-founded domain. Termination is guaran-
teed if a ranking function which decreases during computation is found, in partic-
ular as the program goes through its loops. Termination analysis of Java bytecode
presents some peculiar features which stem from its low-level and object-oriented
nature: (1) loops originate from different sources (conditional and unconditional
jumps, method calls, or even exceptions); (2) size measures must consider sup-
ported data types (primitive types, objects, and arrays); and (3) data can be
stored in local variables, operand stack elements or heap locations.

In this work, we describe a termination analysis for Java bytecode, based
on a translation into a structured intermediate representation similar to that
of [1] where it is applied in the context of cost analysis. This representation
captures in a uniform setting all loops (regardless of whether they originate
from recursive calls or iterative loops) and all variables (either local variables or
operand stack elements). Given this representation we consider a general form of
the size-change graphs principle [11, 4] to prove termination of the intermediate
program, which in turn implies the termination of the original program.

Termination of Java Bytecode by Example: We illustrate our approach
by means of a running example which consists of two Java methods, doSum and

⋆ This work was funded in part by the Information Society Technologies program
of the European Commission, Future and Emerging Technologies under the IST-
15905 MOBIUS project, by the Spanish Ministry of Education (MEC) under the
TIN-2005-09207 MERIT project, and the Madrid Regional Government under the
S-0505/TIC/0407 PROMESAS project. S. Genaim was supported by a Juan de la

Cierva Fellowship awarded by MEC.

x == null

guard(ifnull)

4: iconst_0
5: ireturn

7: getfield List.data

13: aload_0

20: iaddRETURN

return 0;

doSum

0: aload_0
1: ifnonnull 6

x != null

guard(ifnonnull)

6: aload_0

10: invokestatic(factorial)

14: getfield List.next
17: invokestatic(doSum)

21: ireturn

return factorial(x.data) + doSum(x.next)

Ret

Block−0

Block−1
Block−2

RETURN

0: iconst_1
1: istore_1
2: iconst_1
3: istore_2

int fact=1;
int i=1;

factorial

6: if_icmpgt 19
5: iload_0
4: iload_2 i <= n

i > n

return fact;

9: iload_1
10: iload_2
11: imult
12: istore_1
13: iinc 2,1

i=i+1;
fact=fact*i;

19: iload_1
20: ireturn

guard(if_icmpgt)

guard(if_icmple)

Ret

Block−0

Block−2
Block−1

Block−3

static int doSum(List x) {
if (x == null) return 0;
else

return factorial(x.data)+
doSum(x.next);

}

static int factorial(int n) {
int fact = 1;
for (int i = 1; i <= n; i++)

fact = fact ∗ i;
return fact;

}

Fig. 1. Control flow graphs for the running example, with possible Java source code

factorial. Fig. 1 depicts their control flow graphs (CFGs for short), explained in
more detail below, and provides a possible Java source for each method. The
process is divided into five steps. The first two are required to obtain a struc-
tured representation of the program. The other three are required for proving
termination.

Step I: Control Flow Graph. To facilitate standard termination proving tech-
niques, we first transform the unstructured control flow of bytecode into a struc-
tured intermediate representation. A control flow graph consists of guarded basic
blocks and edges which describe how control flows between blocks. Basic blocks
are sequences of non-branching bytecode instructions, and edges are obtained
from instructions which might branch such as virtual method invocation, con-
ditional jumps, exceptions, etc. Observe in the CFG for doSum in Fig. 1 (left),
the branching at Block-0 which distinguishes the base case (Block-1) and the
recursive step (Block-2) for the recursive definition (in the Java code). The suc-
cessive blocks at a branch have mutually exclusive guards since only one of them
can be executed. Guards take the form guard(cond), where cond is a Boolean
condition on the local variables and stack elements. For example, guard(ifnull)
succeeds if the top stack element s0 is a null reference. The branching at Block-1
in the CFG of factorial corresponds to the condition of the for loop in which the
guard guard(if icmpgt) on block Block-2 succeeds if the top two stack ele-
ments s0 and s1 satisfy s0>s1. The special block Ret indicates a normal exit of
the method. Note also that (static) method invocations –both the recursive call
to doSum and the non-recursive call to factorial– appear within invokestatic

bytecode instructions.

2

Step II: Intermediate Representation. In the next step, the CFG is represented
in a procedural way by means of an intermediate representation. This represen-
tation consists of a set of guarded rules which are obtained from the blocks in the
CFG. A principal advantage is that all possible forms of loops in the program
are represented now in a uniform way. We can observe this, for instance, in the
representation of the for loop by means of rule factorial

1
and the representation

of the recursive procedure doSum in the rule doSum. Although method factorial

is not recursive, its associated representation is, as factorial
1

contains a loop.

factorial(n, ret) ← factorial
0
(n, fact, i, ret).

factorial
0
(n, fact, i, ret) ← iconst(1, s0), istore(s0, fact), iconst(1, s0),

istore(s0, i), factorial1(n, fact, i, ret).

factorial
1
(n, fact, i, ret) ← iload(i, s0), iload(n, s1),

(factorial
2
(n, fact, i, s0, s1, ret);

factorial
3
(n, fact, i, s0, s1, ret)).

factorial
2
(n, fact, i, s0, s1, ret) ← guard(if icmpgt(s0, s1)), iload(fact, s0),

ireturn(s0, ret).

factorial
3
(n, fact, i, s0, s1, ret) ← guard(if icmple(s0, s1)),

iload(fact, s0), iload(i, s1), imul(s0, s1, s0),
istore(s0, fact), iinc(i, 1), factorial

1
(n, fact, i, ret).

doSum(x, ret) ← doSum0(x, ret).
doSum0(x, ret) ← aload(x, s0), (doSum1(x, s0, ret);doSum2(x, s0, ret)).
doSum1(x, s0, ret) ← guard(ifnull(s0)), iconst(0, s0), ireturn(s0, ret).
doSum2(x, s0, ret) ← guard(ifnonnull(s0)), aload(x, s0), getfield(List.data, s0, s0),

factorial(s0, s0), aload(x, s1), getfield(List.next, s1, s1),
doSum(s1, s1), iadd(s1, s0, s0), ireturn(s0, ret).

A relevant feature of our representation is that the arguments of each rule corre-
spond to: (1) the method’s local variables (n, fact, i for factorial, and x for doSum

in our example); (2) a single variable which corresponds to the method’s return
value (ret); and (3) the active stack elements si at the block’s entry and exit,
i.e., the stack elements are considered as local variables. The guards and the
bytecodes which appear in the rules are written in a different font in the above
example to distinguish them from calls to blocks. They are obtained from the
block’s guard and bytecode instructions, by adding the local variables and stack
elements on which they operate as explicit arguments.

Step III: Inferring Size Relations and Binary Clauses. Next, a global size anal-
ysis is performed on the recursive representation to infer calls-to size-relations

between the variables in the head of the rule and the variables used in the calls
(to rules) occurring in the body. In our example, assuming that the input to
doSum is an acyclic list, we obtain the following calls-to size-relations:

3

〈factorial(n) 7→ factorial
0
(n′, fact, i), {n′=n}〉

〈factorial
0
(n, fact, i) 7→ factorial

1
(n′, fact′, i′), {n′=n, fact′=1, i′=1}〉

〈factorial
1
(n, fact, i) 7→ factorial

2
(n′, fact′, i′, s0, s1), {s0=i, s1=n, s0≤s1} ∪ ϕid〉

〈factorial
1
(n, fact, i) 7→ factorial

3
(n′, fact′, i′, s0, s1), {s0=i, s1=n, s0>s1} ∪ ϕid〉

〈factorial
3
(n, fact, i, s0, s1) 7→ factorial

1
(n′, fact′, i′), {n′=n, i′=i+1}〉

〈doSum(x) 7→ doSum0(x
′), {x′=x}〉

〈doSum0(x) 7→ doSum1(x
′, s0), {x

′=x, s0=x, s0=0}〉
〈doSum0(x) 7→ doSum2(x

′, s0), {x
′=x, s0=x, s0>0}〉

〈doSum2(x, s0) 7→ factorial(,), {}〉
〈doSum2(x, s0) 7→ doSum(x′), {x′=x−1}〉

where ϕid ≡ {n′=n, fact′=fact, i′=i}. Size relations provide information about
the changes in the size of the data structure (or in the value of integer variables)
when control goes from one part of the program (e.g., a block or a method) to
another one. For example, rule factorial

3
shows that the value of the loop counter

i increases by 1. The analysis is done by: (1) abstracting bytecode instructions
into the linear constraints they impose on their arguments size, where the size
of an integer variable is its value [7], the size of a reference variable is the length
of the maximal-path [14] reachable from that variable and the size of an array is
its length; for instance, the abstraction of the bytecode instruction iinc(i,1)

results in i=i+1; and (2) computing a fixpoint which tracks the calls-to relations.
Note that the path-length analysis [14] abstracts cyclic data structures to top,
therefore our analysis cannot infer termination when it depends on cyclic data
structures.

Step IV: Transitive Closure of Binary clauses. The calls-to relations are exactly
the binary clauses that represents the direct calls between the different blocks
of the program. Starting from this set, we iteratively compute the transitive clo-
sure of their composition in order to obtain binary clauses for the indirect calls,
in particular those that correspond to loops. Informally, composing two binary
clauses 〈p(x̄) 7→ q(ȳ), ϕ1〉 and 〈q(ȳ) 7→ h(z̄), ϕ2〉 results in a new binary clause
〈p(x̄) 7→ h(z̄),∃ȳ.ϕ1 ∧ ϕ2〉. The next recursive binary clauses are, among unnec-
essary others, obtained by the transitive closure of the above binary clauses:

〈factorial
1
(n, fact, i) 7→ factorial

1
(n′, fact′, i′), {n′=n, i′>i, i≤n}〉

〈doSum(x) 7→ doSum(x′), {x′<x, x>0}〉

The notion of binary clauses of [4] is a general form of size-change graphs [11]
in the sense that it allows the use of arbitrary constraints domains to describe
the corresponding program states. This is useful in practice when different loops
might diverge in different directions and when the decreasing measure is a non-
trivial combination of some of the loop arguments. Similar notions to that of
binary clauses have been introduced also in [12, 9, 16, 3].

Step V: Ranking Functions for Loops. Recursive binary clauses in the transi-
tive closure represent all possible loops in the program, and in order to prove
that the corresponding program terminates, it is sufficient to check that for
each such recursive binary clause 〈p(x̄) 7→ p(ȳ), ϕ〉 there exists a function f

over a well-founded domain such that ϕ |= f(p(x̄)) > f(p(ȳ)) [3]. In the last
step we check the existence of a ranking function [15] for each recursive binary

clause in the transitive closure. The functions f(factorial
1
(n, fact, i))=n−i and

4

f(doSum(x))=x are ranking functions which guarantee that the corresponding
loop will be traversed finitely, therefore the program terminates.

Summary: We have a preliminary implementation which is based on the size
analysis of [1] and the binary clauses component of the TerminWeb analyzer [17].
Ongoing work is to formally justify the analysis following the approach of [4],
namely by deriving a concrete binary clauses semantics for Java bytecode from
which termination is observable, and then define the size analysis as an abstract
interpretation of this semantics. From the practical side we plan to improve the
analyzer by adopting some of the techniques described in [6], which have been
proved to be very efficient in practice.

References

1. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of
java bytecode. In ESOP, 2007.

2. A. R. Bradley, Z. Manna, and H. B. Sipma. Termination of polynomial programs.
In VMCAI, 2005.

3. M. Bruynooghe, M. Codish, J. P. Gallagher, S. Genaim, and W. Vanhoof. Termi-
nation Analysis of Logic Programs through Combination of Type-Based Norms.
TOPLAS, 2006. to appear.

4. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic
programs. The Journal of Logic Programming, 41(1):103–123, 1999.

5. M. Colón and H. Sipma. Practical methods for proving program termination. In
CAV, 2002.

6. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.
In PLDI, 2006.

7. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL, 1978.

8. P. Cousot. Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In VMCAI, 2005.

9. N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. A general framework
for automatic termination analysis of logic programs. Appl. Algebra Eng. Commun.

Comput., 12(1/2):117–156, 2001.
10. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic Termi-

nation Proofs in the Dependency Pair Framework. In IJCAR, 2006.
11. C. S. Lee, N. D. Jones, and A. M. Ben-Ammar. The size-change principle for

program termination. In POPL, 2001.
12. N. Lindenstrauss and Y. Sagiv. Automatic termination analysis of logic programs.

In ICLP, 1997.
13. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. A-W, 1996.
14. P. M. Hill, E. Payet, and F. Spoto. Path-length analysis of object-oriented pro-

grams. In EAAI, 2006.
15. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. In VMCAI, 2004.
16. A. Podelski and A. Rybalchenko. Transition invariants. In LICS, 2004.
17. C. Taboch, S. Genaim, and M. Codish. Terminweb: Se-

mantic based termination analyser for logic programs, 2002.
http://www.cs.bgu.ac.il/~mcodish/TerminWeb.

5

