Resource Analysis: From Sequential to
Concurrent and Distributed Programs

Elvira Albert!, Puri Arenas', Jesis Correas!, Samir Genaim', Miguel
Goémez-Zamalloa!, Enrique Martin-Martin!, Germén Puebla?, and
Guillermo Romén-Diez?

1 DSIC, Complutense University of Madrid, Spain
2 DLSIIS, Technical University of Madrid, Spain

Abstract. Resource analysis aims at automatically inferring upper/lower
bounds on the worst/best-case cost of executing programs. Ideally, a re-

source analyzer should be parametric on the cost model, i.e., the type of

cost that the user wants infer (e.g., number of steps, amount of memory

allocated, amount of data transmitted, etc.). The inferred upper bounds

have important applications in the fields of program optimization, verifi-

cation and certification. In this talk, we will review the basic techniques

used in resource analysis of sequential programs and the new extensions

needed to handle concurrent and distributed systems.

1 Introduction

One of the most important characteristics of a program is the amount of re-
sources that its execution will require, i.e., its resource consumption. Resource
analysis (a.k.a. cost analysis [23]) aims at statically bounding the cost of execut-
ing programs for any possible input data value. Typical examples of resources
include execution time, memory watermark, amount of data transmitted over
the net, etc. Resource usage information has many applications, both during
program development and deployment. Upper bounds on the worst-case cost are
useful because they provide resource guarantees, i.e., it is ensured that the exe-
cution of the program will never exceed the amount of resources inferred by the
analysis. Lower bounds on the best-case cost have applications in program par-
allelization, they can be used to decide if it is worth executing locally a task or
requesting remote execution. Therefore, automated ways of estimating resource
usage are quite useful and the general area of resource analysis has received
[2314)22] and is nowadays receiving [GII5II6I17] considerable attention. In this
paper, we describe the main components underlying resource analysis of a to-
day’s imperative programming language, e.g., such techniques have been applied
to analyze the resource consumption of sequential Java and Java bytecode [19].
In a next step, we describe the extension of the sequential framework to handle
concurrent programs and overview the new notions of cost that arise in these
contexts.
The rest of the paper is organized in four sections as follows:

— Sequential. Section 2] considers a minimalistic imperative language and sum-
marizes the process of, from a program, generating upper bounds on the
worst-case cost of executing the program in terms of the input data sizes.
We also discuss relevant extensions of the basic framework to handle object-
oriented programs and non-cumulative resources.

— Distribution and Concurrency. Section[3|describes the extension of such tech-
niques to analyze distributed and concurrent programs. First, in Section [3.1]
we introduce the basic instructions for distribution, namely to create dis-
tributed locations and to spawn an asynchronous task in a remote location;
and for concurrency, in particular an instruction to synchronize with the
termination of an asynchronous task and be able to release the processor if
the task has not terminated yet (in this case, another task waiting in this
location can take the processor). In Sections and we consider the
distribution aspects from the point of view of resource consumption. Here
our main concern is to be able to infer the resource consumption distributed
among the locations of the system rather than producing a monolithic ex-
pression that amalgamates the whole cost. For this purpose, we present the
notion of cost centers and describe an underlying analysis to obtain them. In
Section [3.4] we consider the inference of the cost in the presence of tasks with
concurrent interleavings. This is challenging because the global variables can
be modified between the time a task suspends until it resumes, and this can
affect its resource consumption (e.g., the size of the data structure that a
loop traverses can be increased during its suspension). We sketch a novel
technique to infer the resource consumption in these cases.

— New notions. In this context of distributed systems, new notions of cost arise.
In first place, there are new cost models that can be considered to estimate
the performance of a distributed system, namely it is particularly interest-
ing to predict the load balance of the distributed locations, the amount of
data transferred among them and the parallelism achieved. Moreover, it is
relevant to obtain the peak of the resource usage of each distributed location
rather than the total amount of resources allocated in it. In order to infer
such peak cost, one needs first to estimate the queue configuration of each
distributed location, i.e., the tasks that might be simultaneously in such loca-
tion queue and then we can accumulate their resource consumption together.
This notion of peak is especially relevant in the context of non-cumulative
resources that might increase and decrease along the execution. Finally, we
introduce the notion of parallel cost which aims at overviewing the resource
consumption of the overall distributed system by exploiting the parallelism
among their nodes such that when tasks execute in parallel we only consider
the duration of the longest among them.

— Conclusions. Finally, in Section [5| we conclude and point out open problems
in this setting and our directions for future research.

2 Resource Analysis of Sequential Code

In this section we consider a sequential language which is deliberately simple
to describe the analysis in a clear way. Distributed/concurrent operations are
introduced later in Section [3| A program is a collection of methods of the form
T m(int xq,...,int 2x){s1;82;...,5n; }, where x;, 1 < ¢ < k, denote variables
names and T € {int,void}. Each instruction s; € Instr, 1 < ¢ < n, adheres to
the following grammar:

su=ux =e|if b then s else s | while b do s | x = m(y) | return x

where z, y denote variables names. For the sake of generality, the syntax of
expressions e and Boolean conditions b is not specified. As notation, for any
entity A, we use A as a shorthand for Ai,..., A,.

A common way to rigorously represent an execution is by means of a state
transition system, which is an abstract machine that consists of a set X of states
and a binary relation ~C X x X, which represents transitions between states.
An execution & starts from an initial state Sy containing a method call. We use
Si ~s S, with §;,S; € X, to denote that there is a transition from §; to S in
which instruction s has been executed. A state is final iff it has no successors.
Similarly, an execution is final if it finishes in a final state. Note that for our
sequential language, executions consist of only one branch. However, as we will
see in Section [3] for distributed and concurrent languages, multiple results for
an initial call can be computed.

2.1 Cost Models

The notion of cost model for a program specifies how the resource consumption
of a program is calculated, given a resource of interest. It basically defines how
to measure the resource consumption, i.e., the cost, associated to each execu-
tion step and, by extension, to an entire execution. Thus, a cost model M is a
function defined as M : Instr — R and the cost of an ezecution step is defined
as M(S~;8")=M(s). For instance, a cost model which counts the number of
execution steps can be defined as Mynst(s) = 1 for any s € Instr and a cost
model counting the number of times that a concrete method m is executed can
be defined as:

Meais(s) = {

Now, given a cost model M and an execution &£, the cost of € w.r.t. M,
denoted as Cost(E, M) is defined as the sum of the costs of all execution steps
in £.

1if s is a call m(z)
0 otherwise

2.2 Upper Bounds

An upper bound for m(Z) w.r.t. a cost model M, is a function f(Z) = cexp on &
which guarantees that for all @ € Z, and for any final execution £ starting from

m(@) it holds that Cost(E, M) < f(u). The cost expressions cexp that can be
handled in our framework follow the grammar below:

cexp =7 | nat(l) | cexp op cexp | log,, (nat(l) + 1) | n"2t®) | max(S)

where op € {+,*}, 7 € RT, n > 1€ Z*, nat(l) is defined as nat(l) = max({/,0}),
max(S) stands for the maximum of the set of cost expressions S and [denotes a
linear expression of the form ug + w121 + ... u,x,. The use of the nat-operator
ensures that cost expressions are always evaluated to non-negative values. For
instance the expression nat(z — 1) is a valid cost expression which returns 0 for
all z <1.

The cost analysis framework that we follow [3] is based on transforming the
original program in a set of cost equations by applying different static analyses
and transformations on the source program. In particular, the main two steps to
produce cost equations are: the transformation of the program into direct recur-
sive form, and a size analysis which infers how the sizes of data change along the
execution. From the equations, the upper bound is computed by (1) bounding
the number of iterations of each recursive equation using linear ranking functions
[21] and (2) by maximizing the local cost of each equation. As an example, con-
sider the cost model which counts the number of executed instructions together
with the program:

int m(int x, int y) {

intr=0, a;

while (x < y) { int p(int x) {
a = p(x); x=x+1;
r=r+4 a; return x;
X=X+ 1; }

}

return r;

}

Considering that the cost of x = x+1 is 2 (the addition plus the assignment), an
upper bound for p is 3. For the case of m, first we bound the number of iterations
in the while loop by means of the linear ranking function nat(y —). Secondly,
we multiply the bound on the number of iterations by the cost inside the loop
(8, which results from the 4 instructions in the loop, 1 method call, and the 3
instructions of the method) and the cost of executing the condition (1). Thus
nat(y —) 9 is an upper bound for the while loop. Finally, we add 3 due to the
costs of the instructions outside the loop and the final evaluation of the guard,
and the upper bound for m results in m™(x,y) = 3 + nat(y —) * 9.

Suppose now that method p has an upper bound p™(z) = nat(z). Then the
cost of the instruction a = p(x) is obtained by maximizing p*(z) in the context
of its execution, namely x < y, which results in nat(y). Hence now the upper
bound for m would be m™*(z,y) = 3 + nat(y — z) * (nat(y) + 6).

2.3 Extensions of Sequential Resource Analysis

The language we have used along this section does not contain a global memory,
instead all variables in a method are local to it. In the presence of global variables,
the computation of upper bounds becomes harder since when bounding the
number of iterations of a loop we must take into account if the condition of
the loop depends on a shared variable. For example, suppose we extend the
language in Section [2] to support classes and objects in the standard way, where
a class may contain integer fields shared by all objects of the class. Consider the
following implementation of method m:

int m(A o1, A oy, inty) {

intr=0;
while (01.x < y) { int p(A o) {
?f rpgfzg,; // read and write field 0,.x
N ' return 05.x;
01.Xx = 01.x + 1; }
}
return r;

}

where 01, 0o are objects of a class A which contains a field x. The termination
of the while loop depends clearly on the call p(op) in the following sense: If
o1 and o0y points to the same memory location, then field x is always accessed
by the same reference, say o1, and it can be treated as a local variable, what
allows to apply the same techniques than in Section in order to compute an
upper bound. Otherwise, we will not be able to infer the cost as it will depend
on the calling context of method m. Our approach [2] consists in computing
the sequence of (access path) used to access each field in the program. Then,
if the field is not written or its written by a unique access path, such a field
is considered as trackable, i.e., the field can be treated as a local variable for
the method. For our example at hand, it holds that in method m, the field x is
read and written by two different references, o; and o, and hence the field is not
trackable and the termination of the loop can not be proven. However suppose
that, after the instruction int r = 0, we add o; = 0,. Now field x is written only
using o; and thus the field is considered trackable, what allows us to compute
an upper bound for method m similarly as done in Section but in terms of
01.x. More sophisticated approaches to deal with shared memory can be found
in [4] and [5], where reference fields and array fields are also considered.
Another extension to sequential resource analysis is the inference of non-
cumulative resources [9]. Existing cost analysis frameworks have been defined
for cumulative resources which keep on increasing along the computation. In
contrast, non-cumulative resources are acquired and (possibly) released along the
execution. Examples of non-cumulative cost are memory usage in the presence
of garbage collection, number of connections established that are later closed, or
resources requested to a virtual host which are released after using them.

It is recognized that non-cumulative resources introduce new challenges in
resource analysis [I2II8]. This is because the resource consumption can increase
and decrease along the computation, and it is not enough to reason on the final
state of the execution, but rather the upper bound on the cost can happen at
any intermediate step. The analysis of non-cumulative resources is defined in
two steps: (1) We first infer the sets of resources which can be in use simulta-
neously (i.e., they have been both acquired and none of them released at some
point of the execution). This process is formalized as a static analysis that (over-
Japproximates the sets of acquire instructions that can be in use simultaneously,
allowing us to capture the simultaneous use of resources in the execution. (2)
We then perform a program-point resource analysis which infers an upper bound
on the cost at the points of interest, namely the points at which the resources
are acquired. From such upper bounds, we can obtain the peak cost by just elim-
inating the cost due to acquire instructions that do not happen simultaneously
with the others (according to the analysis information gathered at step 1).

3 Resource Analysis of Distributed Concurrent Systems

This section describes the basic extensions to resource analysis of distributed
and concurrent systems.

3.1 The Language

We consider a distributed concurrent programming model with explicit locations
and cooperative concurrency between the tasks at each location. Each location
represents a processor with a procedure stack and an unordered buffer of pending
tasks. Initially all processors are idle. When an idle processor’s task buffer is non-
empty, some task is selected for execution. Besides accessing its own processor’s
global storage, each task can post tasks to the buffers of any processor, including
its own, or synchronize with the reception of other tasks. When a task completes,
its processor becomes idle again, chooses the next pending task, and so on.
The number of locations need not be known a priory (e.g., locations may be
virtual). Syntactically, a location will therefore be similar to an object and can
be dynamically created using the instruction newLoc. The new set of instructions
of the language, extended with distributed operations from that of Section [2] is
as follows:

s’ :=s|x =newLoc | z = newDC | f = z.m() | await f? | x = f.get

Let us observe that now variables can hold locations and therefore the set of
types is extended to {veid, int,loc}, being loc the set of locations and distributed
components. The special location identifier this denotes the current location.
We can achieve different ways of distributing an application by creating new
locations with newlLoc or new distributed components by means of newDC.
When we use newDC, a new distributed component is created, whereas when

we use newlLoc, the created location (and its resource consumption) belongs to
the current distributed component.

The language is also extended with future variables, denoted by f in the
grammar, which are used to check if the execution of an asynchronous task has
finished. Method calls on locations are asynchronous and are associated with
a future variable that will hold their result. The instruction await f? allows
synchronizing the execution of the current task with the task which the future
variable f is pointing to; and instruction x = f.get is used to retrieve the value
stored in f.

3.2 Cost Models

In Section 2.1 we presented some important cost models for sequential programs.
However, other interesting cost models can be defined in distributed and con-
current systems, as shown in [I]. For instance, a cost model that counts the
total number of distributed components (number of locations), created along the
execution can be defined as Mioc(s) = 1 if s = 2 = newDC (newlLoc) and
Mioc(s) = 0 otherwise. Since distributed components are the distribution units,
this cost model provides an indication on the amount of parallelism that might
be achieved.

A cost model that counts instructions of the form z.m(gy) can be used to
infer the number of tasks that are spawned along an execution. This cost model
can be refined to count the number of calls to specific methods, locations or
distributed components by focusing on specific method and object names.

Communications play a fundamental role in the design of a distributed sys-
tem, because they influence their performance. A cost model that counts the
number of communications or the amount of transmitted data is very useful
when designing distributed systems. The goal of such cost models is to infer,
not only the number of communications between locations or distributed com-
ponents, but also the sizes of the arguments in the task invocation and of the
returned values. This cost model that over-approximates the amount of data
transmitted uses size analysis [I3] to infer upper bounds on the data sizes at the
points in which tasks are spawned. In particular, given an instruction z.m(y) it
over-approximates the size of § and also of the returned value.

3.3 Distribution: Cost Centers

In a distributed setting, the above notion of cost model has to be extended
because, rather than considering a single component in which all steps are per-
formed, we have in general multiple locations and distributed components possi-
bly running concurrently and/or distributively on different CPUs. Thus, rather
than aggregating the cost of all executing steps, it is required to treat execution
steps which occur on different locations or components separately. With this
aim, we adopt the notion of cost centers [20], proposed for profiling functional
programs. The upper bounds will use cost centers in order to keep the resource
usage assigned to the different components separate.

Ideally, one would like to have a different cost center for each different lo-
cation or distributed component created along the execution of the program.
However this cannot be determined statically and has to be approximated. For
this aim, we rely on points-to analysis in order to approximate the set of lo-
cations or distributed components which each reference variable may point to
during program execution. This allows us to make the analysis object-sensitive
and separate the cost that corresponds to different instances of locations and/or
distributed components that are created at the same program point but that
correspond to different object names and may belong to different distributed
components.

3.4 Concurrency: MHP-based Analysis

Resource consumption inference in concurrent and distributed systems is more
difficult than in the sequential case, since different tasks can interleave their
executions and therefore change the value of shared variables. This situation
becomes clearer in the following example from [I1], where g is a shared variable
and x is a variable local to Ss:

1+ while (g > 0){ 5 while (x > 0){

2 g=g-—1, 6 X =x—1;
Sl 3 await x7 SQ 7 g =%

a} s }

The instruction at that updates the field g, may interleave with await *?
at I3]in S7. Therefore the number of iterations of the loop S; may differ from the
original value of g, as the value of that shared variable can change between itera-
tions. To infer the number of iterations of S7 we use the following approach [11]:

1. Locate those instructions that update shared variables and can interleave
with the loop. In the example, the only interleaving instruction that up-
dates g is To obtain this information we use a may-happen-in-parallel
analysis [I0]. This analysis over-approximates the pairs of program instruc-
tions that can execute in parallel or in an interleaved way.

2. Find an upper-bound on the number of times that those interleaving instruc-
tions are executed. This computation may require the recursive calculation
of upper bounds for other loops. In the example above, a sound and precise
bound on the number of executions of I[7]is x, since x is a local variable.

3. Finally, the upper bound for S; is the maximum number of iterations ig-
noring the instruction await *? , but assuming that at this point g can take
its maximum value g, multiplied by the maximum number of visits to L@
Thus, g© * x is a sound upper bound.

Once we have computed an upper bound on the iterations of the loop, we can
easily infer the concrete resource consumption by using a concrete cost model.
Notice that the may-happen-in-parallel analysis is crucial, since it will be able

to discard some spurious interleavings that will lead to imprecise upper bounds.
Otherwise, we will be forced to consider that every updating instruction could
interleave with every loop. Note also that the may-happen-in-parallel analysis is
independent and it is used as a black-bozx, so any improvement on it will enhance
the upper bounds automatically.

4 New Notions of Cost in Distributed Systems

Building upon the basic analysis presented in the previous section, in this section
we describe new cost models and notions of cost that appear in distributed
systems.

4.1 Advanced Cost Models

By building upon the cost models described in Section [3.2] we have defined
several advanced cost models that provide indicators to assess the level of distri-
bution in the system [7], the amount of communication among distributed nodes
that it requires, and how balanced the load of the distributed nodes that compose
the system is. Our indicators are given as functions on the input data sizes, and
they can be used to automate the comparison of different distributed settings
and guide towards finding the optimal configuration. Let us see an example to
explain these issues:

1 void m(int n){ 9 void p(int n,loc a) {
2 loc a = newlLoc | newDC; 10 while (n > 0) {
3 while (n > 0) { 11 a.q();
4 loc b = newlLoc | newDC; 12 n=n-1;
5 b.p(n,a); 13}
6 n=n-—1, 14 }
7 } 15 () { 10 instr}
8
}

Method m creates one location using newLoc(or distributed component using
newDC) at IJ2| pointed by variable a and it contains a loop that creates n loca-
tions (or distributed components) at Such loop also spawns n tasks executing
method p (Method p contains a loop that calls q n times (Those pro-
gram points where locations are created, and are crucial for determining
the behaviour of the system. Depending on the creation of a distributed com-
ponent (newDC) or a location (newLoc), we obtain a different setting whose
performance could be radically different from the others. To evaluate which set-
ting has a better performance, we define the notion of performance indicator. A
performance indicator is a function, expressed in terms of the input arguments
of the program, that evaluates to a number in the range [0-1], such that the
closer to one the better the performance. We define three different indicators:

1. The distribution function (D) measures how much distributed the appli-
cation is. It is defined as the relation between the number of distributed
components that are created for this particular setting with respect to the
maximum number of potential distributed components that could be created
if all location instances were distributed components, i.e., the optimal set-
ting from a distribution perspective in which we have as many distributed
components as possible.

2. The communication function (K) aims at measuring the level of external
communications performed (i.e., calls to locations that belong to other dis-
tributed components). The motivation is that calls to other distributed com-
ponents are potentially more expensive (as they require communications
costs) and thus one wants to minimize them as much as possible. It is de-
fined as one minus the ratio between the number of communications that
the program performs in the current setting, and the maximum number of
communications when using a setting in which all locations are created as
distributed components and thus every asynchronous call (on a location dif-
ferent from the one executing) is external.

3. The balance function (B) measures the balance level of the distributed sys-
tem. We consider that the system is optimally balanced when all its compo-
nents execute the same number of instructions. The balance function makes
use of the upper bounds on the number of instructions and the upper bounds
on the number of distributed components (and locations) to measure the
standard deviation of the number of instructions executed by each dis-
tributed component. As we want to measure the balance level by means
of a number in the interval [0-1] as in the other indicators, we divide the
standard deviation by the maximum dispersion of the distributed compo-
nents from the average.

Figure [I] shows the graphical representation of the functions D, K and B
for two possible settings by using newlLoc or newDC at and of the
program shown above. By means of the evaluation of the performance indicators
we can observe that for Setting 1 higher values of n lead to a better distribution
behaviour because a new distributed component is created at each iteration of
the loop in m. Regarding communications, Setting 2 behaves better for lower
values of n, but for higher values of n, both settings behave badly (close to 0).
In addition, the evaluation of the balance function indicates that the load of
the system is better balanced with Setting 1. The information obtained from
the performance indicators could be extremely useful in the deployment process
of a distributed system. In order to find the optimal setting for a distributed
system, we should be able to: (1) generate all possible settings automatically,
(2) generate performance indicators for each of them and (3) be able to compare
such indicators for the different settings.

4.2 Peak Cost

The framework presented so far allows us to infer the total number of instruc-
tions that it needs to execute, the total amount of memory that it will need

Setting 1: a = newloc
b = newDC

Setting 2: a = newDC a
b = newlLoc

0.8

5 10 15 20 5 10 15 20
n n

Fig. 1. Graphical representation of the functions D, K and B

to allocate, or the total number of tasks that will be added to its queue. This
is a too pessimistic estimation of the amount of resources actually required in
the real execution. The amount of work that each location has to perform can
greatly vary along the execution depending on: (1) the amount of tasks posted
to its queue, (2) their respective costs, and (3) the fact that they may be posted
in parallel and thus be pending to execute simultaneously. In order to obtain
a more accurate measure of the resources required by a location, the peak of
the resource consumption can be inferred instead [§], which captures the maxi-
mum amount of resources that the location might require along any execution.
In addition to its application to verification, this information is crucial to di-
mensioning the distributed system: it will allow us to determine the size of each
location task queue; the required size of the location’s memory; and the pro-
cessor execution speed required to execute the peak of instructions and provide
a certain response time. It is also of great relevance in the context of software
virtualization as used in cloud computing, as the peak cost allows estimating
how much processing/storage capacity one needs to buy in the host machine,
and thus can greatly reduce costs.

Inferring the peak cost is challenging because it increases and decreases along
the execution, unlike the standard notion of total cost which is cumulative. To
this end, it is very relevant to infer, for each distributed component, its abstract
queue configuration, which captures all possible configurations that its queue can
take along the execution. A particular queue configuration is given as the sets of
tasks that the location may have pending to execute at a moment of time. For

instance, let us see the following example program, which has as entry method
exl:

1 void ex1() { 6 void m1() { 12 void m2() {
2 ff =this.ml(); - fa =xa(); 13 x.d();
3 await ff ?; s await fa?; 14 x.e();
4 this. m2(); o fb = X.b(); 15 }
5 } 10 await fb7?;
11 }

It first invokes method m1l, which spawns tasks a and b. Method m1 guarantees
that a and b are completed when it finishes. Besides, we know that the await
instruction in L8 ensures that a and b cannot happen in parallel. Method m2
spawns tasks d and e and does not await for their termination. We can observe
that the await instructions in ml guarantee that the queue is empty before
launching m2. We can represent the tasks in the queue of location x by the tasks
queue graph by means of the following queue configurations: {{a}, {b},{d, e}}.

In order to quantify queue configurations and obtain the peak cost, we need
to over-approximate: (1) the number of instances that we might have running
simultaneously for each task and (2) the worst-case cost of such instances. The
main extension is to define cost centers of the form c(o:m) which contain the
location name o and the task m running on it. Now, using the upper bounds
on the total cost in Section [3.3] we already gather both types of information.
This is because the cost attached to the cost center c(o:m) accounts for the
accumulation of the resource consumption of all tasks running method m at
location o. We therefore can safely use the total cost of the entry method p(Z)
restricted to 0:m, denoted pT (f)|{o:m}, as the upper bound of the cost associated
with the execution of method m at location o which sets up to 0 the cost centers
different from c(o:m). The key idea to infer the quantified queue configuration,
or simply peak cost, of each location is to compute the total cost for each element
in the set of abstract configurations and stay with the maximum of all of them.
In the previous example, the peak cost of location x in exl is maz{ex] (n)],,
exy (n)|ey, ez (n)|e, }, where ¢; = {z:a}, co = {z:b} and c3 = {x:d, z:¢}.

4.3 Parallel Cost

Parallel cost differs from the standard notion of serial cost by exploiting the
truly concurrent execution model of distributed processing to capture the cost
of synchronized tasks executing in parallel. It is also different to the peak cost
since this one is still serial; i.e., it accumulates the resource consumption in
each component and does not exploit the overall parallelism as it is required
for inferring the parallel cost. It is challenging to infer parallel cost because one
needs to soundly infer the parallelism between tasks while accounting for waiting
and idle processor times at the different locations. We are currently developing
a static analysis to obtain the parallel cost.

5 Conclusions and Future Research

Inferring the resource consumption (a.k.a cost) of computer programs, which is
a general form of complexity, is one of the most fundamental tasks in computer
science, and its automation has been the subject of voluminous research in the
last decade.

Research in this area resulted in several cost analysis frameworks for sequen-
tial low- and high-level modern programming languages, such as the sequential
fragments of Java and its corresponding low-level bytecode. These frameworks
have been enhanced overtime to scale for large programs, and to handle programs
with complex control-flow and sophisticated heap data-structures. They have
also been extended to support non-cumulative cost models in which resources
can be released as well, e.g., memory consumption in the presence of garbage
collection. The underlying complexity analyses employed by these frameworks
range from the classical worst/best case approach to more advanced ones such
as the amortised analysis approach, and thus they offer users a wide range of
performance/precision trade-offs. Some of these frameworks also provide support
for certification and verification of resource consumption.

Research in recent years has concentrated on extending the sequential cost
analysis frameworks to handle concurrency and distribution. The main challenge
was to handle new notions of cost that are more suitable for such programming
paradigms. This includes the peak cost, that refers to the maximal amount of
resources that can be used simultaneously (by different tasks), and the parallel
cost, that do not accumulate the cost of tasks that are executing in parallel
on different computing units. The underlying techniques for these notions of
cost rely on the use of MHP analysis, which provides information on which tasks
might interleave or execute in parallel. Another important functionality that was
introduced is the ability to attribute cost to particular nodes of a distributed
system, which is of utmost importance for optimizing the resource usage of such
systems or balancing the load of their nodes.

In spite of the remarkable achievements in the field of cost analysis, there are
still several directions that need to be considered in the future: (1) exploring new
applications for cost analysis. A promising direction is the use of cost analysis
to identify security vulnerabilities that are related to resource consumption; (2)
current techniques for cost analysis of concurrent programs predict the cost at
the algorithmic level, more work is required to leverage these techniques to take
the underlying (multi-core) architecture into account. This would require sup-
porting more sophisticated concurrency models; (3) in the context of parallelism,
cost analysis of massive parallel programs has not been investigated yet, more
attentions should be paid to such programming paradigms as they are popular
in scientific communities; (4) support for probabilistic information is probably
the most important and appealing direction. Probabilistic distributions can be
used to describe a cost model, which allows constructing platform dependent
cost models (e.g., energy) using profiling tools. Probabilistic distributions can
be also used to describe the distribution of the input data, which can then be
used to infer notions such average cost and distribution of cost.

Acknowledgments. This work was funded partially by the EU project FP7-ICT-
610582 ENVISAGE: Engineering Virtualized Services (http://www.envisage-
project.eu), by the Spanish MINECO project TIN2012-38137, and by the CM
project S2013/ICE-3006.

References

1.

10.

11.

12.

13.

14.

15.

16.

E. Albert, P. Arenas, J. Correas, S. Genaim, M. Gémez-Zamalloa, G. Puebla, and
G. Romén-Diez. Object-Sensitive Cost Analysis for Concurrent Objects. Software
Testing, Verification and Reliability, 25(3):218-271, 2015.

. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Field-Sensitive Value Analysis

by Field-Insensitive Analysis. In Proc. of FM’09, volume 5850 of LNCS, pages
370-386. Springer, 2009.

E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning, 46(2):161-203, 2011.

E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Ramirez. From Object Fields
to Local Variables: A Practical Approach to Field-Sensitive Analysis. In Proc. of
SAS’10, volume 6337 of LNCS, pages 100-116. Springer, 2010.

E. Albert, P. Arenas, S. Genaim, G. Puebla, and G. Roméan-Diez. Conditional Ter-
mination of Loops over Heap-allocated Data. Science of Computer Programming,
92:2 — 24, 2014.

E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of
Object-Oriented Bytecode Programs. Theoretical Computer Science, 413(1):142—
159, 2012.

E. Albert, J. Correas, G. Puebla, and G. Romédn-Diez. Quantified Abstract
Configurations of Distributed Systems. Formal Aspects of Computing, 2015.
http://dx.doi.org/10.1007/s00165-014-0321-z.

E. Albert, J. Correas, and G. Roméan-Diez. Peak Cost Analysis of Distributed
Systems. In Proc. of SAS’14, volume 8723 of LNCS, pages 18-33, 2014.

E. Albert, J. Correas, and G. Roman-Diez. Non-Cumulative Resource Analysis.
In Procs. of TACAS’15, volume 9035 of LNCS, pages 85—100. Springer, 2015.

E. Albert, A. Flores-Montoya, and S. Genaim. Analysis of May-Happen-in-Parallel
in Concurrent Objects. In Proc. of FORTE’12, volume 7273 of LNCS, pages 35-51.
Springer, 2012.

E. Albert, A. Flores-Montoya, S. Genaim, and E. Martin-Martin. Termination and
Cost Analysis of Loops with Concurrent Interleavings. In ATVA 2013, LNCS 8172,
pages 349-364. Springer, October 2013.

E. Albert, S. Genaim, and M. Gémez-Zamalloa. Parametric Inference of Memory
Requirements for Garbage Collected Languages. In Proc. of ISMM’10, pages 121—
130. ACM, 2010.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL, pages 84-96, 1978.

S. K. Debray and N. W. Lin. Cost Analysis of Logic Programs. ACM Transactions
on Programming Languages and Systems, 15(5):826-875, November 1993.

S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: Precise and Efficient Static
Estimation of Program Computational Complexity. In Proc. of POPL’09, pages
127-139. ACM, 2009.

J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate Amortized Resource Anal-
ysis. In Proc. of POPL’11, pages 357-370. ACM, 2011.

17.

18.

19.

20.

21.

22.

23.

J. Hoffmann and Z. Shao. Type-Based Amortized Resource Analysis with Integers
and Arrays. In Functional and Logic Programming - 12th International Symposium,
FLOPS, volume 8475 of LNCS, pages 152—168. Springer, 2014.

M. Hofmann and S. Jost. Static prediction of heap space usage for first-order
functional programs. In Proc. of POPL’13, pages 185-197. ACM, 2003.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1996.

Richard G. Morgan and Stephen A. Jarvis. Profiling Large-Scale Lazy Functional
Programs. Journal of Functional Programing, 8(3):201-237, 1998.

A. Podelski and A. Rybalchenko. A Complete Method for the Synthesis of Linear
Ranking Functions. In VMCAI, volume 2937 of LNCS, pages 239-251, 2004.

D. Sands. A Naive Time Analysis and its Theory of Cost Equivalence. Journal of
Logic and Computation, 5(4):495-541, 1995.

B. Wegbreit. Mechanical Program Analysis. Communications of the ACM,
18(9):528-539, 1975.

	Resource Analysis: From Sequential to Concurrent and Distributed Programs

