
Field-Sensitive Unreachability and Non-Cyclicity Analysis

Enrico Scapin and Fausto Spoto

Dipartimento di Informatica - University of Verona (Italy)

BYTECODE/ETAPS 2013

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 1 / 15

Static Analysis

Static Analysis

Definition
Static analysis consists in building compile-time techniques in order to
prove properties of programs before actually running them.

Shape Analyses try to understand how the program execution
manipulates the heap.

e.g.,
sharing analysis determines if two variables might be bound to
overlapping data structures.
reachability analysis determines if exists a path in memory that links
two variables.
cyclicity analysis determines if a variable is bound to a cyclical data
structure.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 2 / 15

State of the Art

State of the Art

Reachability and Cyclicity, state of the art:
Stefano Rossignoli and Fausto Spoto, "Detecting non-cyclicity by abstract compilation into boolean
functions". In: VMCAI’06

Samir Genaim and Damiano Zanardini, "Reachability-based Acyclicity Analysis by Abstract Interpretation".
In: CoRR’12

Ðurica Nikolić and Fausto Spoto, "Reachability Analysis of Program Varibles". In: IJCAR’12

x.next=y; This assignment makes x cyclical if and only
if y reaches x.

We defined a state as σ = 〈ρ, µ〉, where:

ρ maps variables
to locations;
µ binds locations
to objects.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 3 / 15

State of the Art

State of the Art

Reachability and Cyclicity, state of the art:
Stefano Rossignoli and Fausto Spoto, "Detecting non-cyclicity by abstract compilation into boolean
functions". In: VMCAI’06

Samir Genaim and Damiano Zanardini, "Reachability-based Acyclicity Analysis by Abstract Interpretation".
In: CoRR’12

Ðurica Nikolić and Fausto Spoto, "Reachability Analysis of Program Varibles". In: IJCAR’12

x.next=y; This assignment makes x cyclical if and only
if y reaches x.

We defined a state as σ = 〈ρ, µ〉, where:

ρ maps variables
to locations;
µ binds locations
to objects. tikzpicture

next

l2

Elementl2

y µ
ρ

tikzpicture

l1

Element

next

Heap

l1

x

Environment

valuevalue

...

...

...

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 3 / 15

State of the Art

State of the Art

Reachability and Cyclicity, state of the art:
Stefano Rossignoli and Fausto Spoto, "Detecting non-cyclicity by abstract compilation into boolean
functions". In: VMCAI’06

Samir Genaim and Damiano Zanardini, "Reachability-based Acyclicity Analysis by Abstract Interpretation".
In: CoRR’12

Ðurica Nikolić and Fausto Spoto, "Reachability Analysis of Program Varibles". In: IJCAR’12

x.next=y; This assignment makes x cyclical if and only
if y reaches x.

We defined a state as σ = 〈ρ, µ〉, where:

ρ maps variables
to locations;
µ binds locations
to objects. tikzpicture

next

l2

Elementl2

y µ
ρ

tikzpicture

l1

Element

next

Heap

l1

x

Environment

valuevalue

...

...

...

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 3 / 15

Scenario

Scenario

Given the following Java instructions,

while(x!=null)

x=x.next;

Does the loop halt?

Assuming ρ(x) = l1 before starting the loop.

It depends on the cyclicity of variable x.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 4 / 15

Scenario

Scenario

Given the following Java instructions,

while(x!=null)

x=x.next;

Does the loop halt?
Assuming ρ(x) = l1 before starting the loop.

tikzpicture

tikzpicture

next

l2

Element

o2

tikzpicture

next

l4

Element

o4

tikzpicture

l1

Element

o1

next

tikzpicture

next

l3

Element

o3

value value value value

Heap

The loop
terminates in 3
iterations!

It depends on the cyclicity of variable x.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 4 / 15

Scenario

Scenario

Given the following Java instructions,

while(x!=null)

x=x.next;

Does the loop halt?
Assuming ρ(x) = l1 before starting the loop.

tikzpicture

tikzpicture

next

l2

Element

o2

tikzpicture

next

l4

Element

o4

tikzpicture

l1

Element

o1

next

tikzpicture

next

l3

Element

o3

value value value value

Heap

The loop does
not terminate!

It depends on the cyclicity of variable x.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 4 / 15

Properties

Can we refine them?

Yes, by developing a field-sensitive analysis!
while(x!=null)

x=x.next;

x.next=y;

Goal
For each program point, maintain a set of static fields F such that a
program property holds.

We introduce the concept of path P as a tuple of fields linking two
locations inside the heap µ.

e.g., `1 Pµ `4

with P =

〈El .next,El .next,El .next〉

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 5 / 15

Properties

Can we refine them?

Yes, by developing a field-sensitive analysis!
while(x!=null)

x=x.next;

x.next=y;

Goal
For each program point, maintain a set of static fields F such that a
program property holds.

We introduce the concept of path P as a tuple of fields linking two
locations inside the heap µ.

e.g., `1 Pµ `4

with P =

〈El .next,El .next,El .next〉

tikzpicture

tikzpicture

next

l2

Element

o2

tikzpicture

next

l4

Element

o4

tikzpicture

l1

Element

o1

next

tikzpicture

next

l3

Element

o3

value value value value

Heap

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 5 / 15

Properties

Field-sensitive properties

Let
F : set of all fields;
Lσ(x): set of all locations reachable from x .

Unreachability for each path from x to y in state σ, the fields in F
are not part of that path.

∀P ⊆ F
(
x Pσ y =⇒ P ∩ F = ∅

)
≡ x 6 F

σ y

Non-cyclicity for each cycle reachable from x in state σ, the fields
in F are not part of the cycle.

∀` ∈ Lσ(x), ∀P ⊆ F
(
` Pµ `⇒ P ∩ F = ∅

)
≡ x

6�

F
σ

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 6 / 15

Abstract Interpretation

Abstract Interpretation

In order to make our analysis computable, we use the general framework of
Abstract Interpretation.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 7 / 15

Abstract Interpretation

Concrete and Abstract Domains

Σ - set of all states
V - set of all variables
F - set of all program fields

Concrete domain: C = ℘(Σ)

Abstract domain: A = ℘(V × V × ℘(F)) ∪ ℘(V × ℘(F))

Concretization map γ : A→ C

γ(I ∈ A) =

σ ∈ Σ

∣∣∣∣∣∣∣
(
∀a 6 Fb ∈ I , ∃F ′ ⊆ F . a 6 F ′

σ b ∧ F ⊆ F ′
)
∧(

∀c

6�

F∈ I , ∃F ′ ⊆ F . c

6�

F ′
σ ∧F ⊆ F ′

)

Our properties are under-approximated by the information in I .

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 8 / 15

Methodology

Methodology

1 Program Under Analysis

class Element{

private Object value;

private Element prec , next;

public Element(Object value){

this.value=value;

}

public Element(Object value , Element prec){

this.value=value;

this.prec=prec;

prec.next=this;

}

}

public class MWexample{

public static void main(String [] args){

Element top = new Element(new Integer (0));

for(int i=1;i<=3;i++)

top = new Element(new Integer(i),top);

}

}

2 Java Bytecode
3 Control Flow Graph

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 9 / 15

Methodology

Methodology

1 Program Under Analysis

class Element{

private Object value;

private Element prec , next;

public Element(Object value){

this.value=value;

}

public Element(Object value, Element prec){
this.value=value;

this.prec=prec;

prec.next=this;

}
}

public class MWexample{

public static void main(String [] args){

Element top = new Element(new Integer (0));

for(int i=1;i<=3;i++)

top = new Element(new Integer(i),top);

}

}

2 Java Bytecode
invokespecial #1 <Object/<init >()V>

aload_0

aload_1

putfield #2 Element.value: Object

aload_0

aload_2

putfield #3 Element.prec: Element

aload_2

aload_0

putfield #4 Element.next: Element

return

3 Control Flow Graph

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 9 / 15

Methodology

Methodology

1 Program Under Analysis

class Element{

private Object value;

private Element prec , next;

public Element(Object value){

this.value=value;

}

public Element(Object value, Element prec){
this.value=value;

this.prec=prec;

prec.next=this;

}
}

public class MWexample{

public static void main(String [] args){

Element top = new Element(new Integer (0));

for(int i=1;i<=3;i++)

top = new Element(new Integer(i),top);

}

}

2 Java Bytecode
invokespecial #1 <Object/<init >()V>

aload_0

aload_1

putfield #2 Element.value: Object

aload_0

aload_2

putfield #3 Element.prec: Element

aload_2

aload_0

putfield #4 Element.next: Element

return

3 Control Flow Graph
call java.lang.Object.〈init〉() : void

load 0 Element
load 1 Object

putfield Element.value : Object

load 0 Element
load 2 Element

putfield Element.prec : Element

load 2 Element
load 0 Element

putfield Element.next : Element

return void

catch
throw java.lang.Throwable

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 9 / 15

Abstract Constraint Graph

Constraint Based Static Analysis

From the Control Flow Graph we build the Abstract Constraint Graph

Nodes represent bytecode
instructions.
Arcs represent the abstract
semantics.
Each node is decorated with an
abstract set I .
Each arc is decorated with a
propagation rule.
Propagation Rules]i

defined for each type of arc,
depending on its sources;
state how the information in
each node is propagated.

ex
ce
pt
io
n

exit
node 2

call java.lang.Object.〈init〉() : void

node 3
load 0 Element

node 4
load 1 Object

node 5
putfield Element.value : Object

node 6
load 0 Element

node 7
load 2 Element

node 8
putfield Element.prec : Element

node 9
load 2 Element

node 10
load 0 Element

node 11
putfield Element.next : Element

node 12
return void

node 14
catch

]3

#15

]11

]3

]3

]6

]3

]3

]6

]3

]3

]6

]14

]14

]14

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 10 / 15

Propagation Rules

Propagation Rules

Their definitions can became
complex whenever they exploit
other static analyses.
The unreachability and
non-cyclicity information is
propagated along the arcs of the
ACG until reaching a fix-point.
It exists since they are all
monotonic functions.
The fix-point is the maximal
solution of the ACG with respect
to the partial order ⊇.

ex
ce
pt
io
n

exit
node 2

call java.lang.Object.〈init〉() : void

node 3
load 0 Element

node 4
load 1 Object

node 5
putfield Element.value : Object

node 6
load 0 Element

node 7
load 2 Element

node 8
putfield Element.prec : Element

node 9
load 2 Element

node 10
load 0 Element

node 11
putfield Element.next : Element

node 12
return void

node 14
catch

]3

#15

]11

]3

]3

]6

]3

]3

]6

]3

]3

]6

]14

]14

]14

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 11 / 15

Example: putfield κ.f : t

Example: putfield κ.f : t

ins : Σ→ Σ′

It changes the paths between locations!

How to correctly propagate the information w.r.t this instruction?
KEY IDEA: exploit the result of the possible reachability analysis.

〈x , y〉 6∈ MRτ =⇒ x 6 y

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 12 / 15

Example: putfield κ.f : t

Example: putfield κ.f : t (cont.)

e.g., field-sensitive unreachability

for each d 6 Fw such that d 6 sj−2 ∨ sj−1 6 w , F does not change
after the putfield node.
for each a 6 F x such that 〈a, sj−2〉, 〈sj−1, x〉 ∈ MRτ , F probably
changes:

for sure, after the putfield, F does not contain the field f!

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 13 / 15

Conclusions

Conclusions

1 Build an under-approximated analysis to state two field-sensitive
properties.

2 Exploit the abstract interpretation framework to prove its correctness.
each propagation rule Π]i correctly approximates the set of states
obtained by the correspondent instruction ins]i execution:

for each I ∈ A, ins (γ (I)) ⊆ γ (Π (I))
the analysis correctly approximates the semantics of the program with
respect to the two properties defined:
let ⇒∗ 〈 ins ‖ σ〉 be an execution and Iins the approx information,

σ ∈ γ(Iins)

Future works: implementing this analysis in Julia Tool to improve
the precision of its termination checker.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 14 / 15

Conclusions

Conclusions

1 Build an under-approximated analysis to state two field-sensitive
properties.

2 Exploit the abstract interpretation framework to prove its correctness.

each propagation rule Π]i correctly approximates the set of states
obtained by the correspondent instruction ins]i execution:

for each I ∈ A, ins (γ (I)) ⊆ γ (Π (I))
the analysis correctly approximates the semantics of the program with
respect to the two properties defined:
let ⇒∗ 〈 ins ‖ σ〉 be an execution and Iins the approx information,

σ ∈ γ(Iins)

Future works: implementing this analysis in Julia Tool to improve
the precision of its termination checker.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 14 / 15

Conclusions

Conclusions

1 Build an under-approximated analysis to state two field-sensitive
properties.

2 Exploit the abstract interpretation framework to prove its correctness.
each propagation rule Π]i correctly approximates the set of states
obtained by the correspondent instruction ins]i execution:

for each I ∈ A, ins (γ (I)) ⊆ γ (Π (I))

the analysis correctly approximates the semantics of the program with
respect to the two properties defined:
let ⇒∗ 〈 ins ‖ σ〉 be an execution and Iins the approx information,

σ ∈ γ(Iins)

Future works: implementing this analysis in Julia Tool to improve
the precision of its termination checker.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 14 / 15

Conclusions

Conclusions

1 Build an under-approximated analysis to state two field-sensitive
properties.

2 Exploit the abstract interpretation framework to prove its correctness.
each propagation rule Π]i correctly approximates the set of states
obtained by the correspondent instruction ins]i execution:

for each I ∈ A, ins (γ (I)) ⊆ γ (Π (I))
the analysis correctly approximates the semantics of the program with
respect to the two properties defined:
let ⇒∗ 〈 ins ‖ σ〉 be an execution and Iins the approx information,

σ ∈ γ(Iins)

Future works: implementing this analysis in Julia Tool to improve
the precision of its termination checker.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 14 / 15

Conclusions

Conclusions

1 Build an under-approximated analysis to state two field-sensitive
properties.

2 Exploit the abstract interpretation framework to prove its correctness.
each propagation rule Π]i correctly approximates the set of states
obtained by the correspondent instruction ins]i execution:

for each I ∈ A, ins (γ (I)) ⊆ γ (Π (I))
the analysis correctly approximates the semantics of the program with
respect to the two properties defined:
let ⇒∗ 〈 ins ‖ σ〉 be an execution and Iins the approx information,

σ ∈ γ(Iins)

Future works: implementing this analysis in Julia Tool to improve
the precision of its termination checker.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 14 / 15

Conclusions

Thank You

Thank You!

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE’13 15 / 15

	Static Analysis
	State of the Art
	Scenario
	Properties
	Abstract Interpretation
	Methodology
	Conclusions

