Field-Sensitive Unreachability and Non-Cyclicity Analysis J

Enrico Scapin and Fausto Spoto

Dipartimento di Informatica - University of Verona (ltaly)

BYTECODE/ETAPS 2013

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 1/15

Static Analysis

Definition
Static analysis consists in building compile-time techniques in order to
prove properties of programs before actually running them.

Shape Analyses try to understand how the program execution
manipulates the heap.
e.g.,

@ sharing analysis determines if two variables might be bound to
overlapping data structures.

@ reachability analysis determines if exists a path in memory that links
two variables.

@ cyclicity analysis determines if a variable is bound to a cyclical data
structure.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 2 /15

State of the Art

State of the Art

Reachability and Cyclicity, state of the art:
@ Stefano Rossignoli and Fausto Spoto, "Detecting non-cyclicity by abstract compilation into boolean

functions”. In: VMCALI'06

o

Samir Genaim and Damiano Zanardini, "Reachability-based Acyclicity Analysis by Abstract Interpretation”.
In: CoRR'12

Durica Nikoli¢ and Fausto Spoto, "Reachability Analysis of Program Varibles". In: 1JCAR’12

X.next=y; This assignment makes x cyclical if and only
if y reaches x.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 3/15

State of the Art

State of the Art

Reachability and Cyclicity, state of the art:
o

Stefano Rossignoli and Fausto Spoto, "Detecting non-cyclicity by abstract compilation into boolean
functions”. In: VMCALI'06

@ Samir Genaim and Damiano Zanardini, "Reachability-based Acyclicity Analysis by Abstract Interpretation.

In: CoRR'12
Durica Nikoli¢ and Fausto Spoto, "Reachability Analysis of Program Varibles". In: 1JCAR’12

X.next=y; This assignment makes x cyclical if and only
if y reaches x.

We defined a state as o = (p, u), where:

Environment Heap] /,—\\
@ p maps variables] W g Y,
to locations; ; ‘)1‘ é M — / —
@ 4 binds locations

value next | value next
to objocts Tl I

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 3/15

State of the Art

State of the Art

Reachability and Cyclicity, state of the art:
o

Stefano Rossignoli and Fausto Spoto, "Detecting non-cyclicity by abstract compilation into boolean
functions”. In: VMCALI'06

@ Samir Genaim and Damiano Zanardini, "Reachability-based Acyclicity Analysis by Abstract Interpretation.

In: CoRR'12
Durica Nikoli¢ and Fausto Spoto, "Reachability Analysis of Program Varibles". In: 1JCAR’12

X.next=y; This assignment makes x cyclical if and only
if y reaches x.

We defined a state as o = (p, u), where:

Environment Heap | y /, \"
@ p maps variables " Ty, 2
P p _ P N §
to locations: i 1,
P \1 |2 Element Element
@ 4 binds locations

value next N\ value next
to objocts O TNEZDT

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 3/15

Scenario

Scenario

Given the following Java instructions,

while (x!=null)
X=X.next;

Does the loop halt?

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis

BYTECODE'13

4/15

Scenario

Scenario

Given the following Java instructions,

Does the loop halt?

while(x!=null)

X=X.next;

@ Assuming p(x) = h before starting the loop.

Heap

/\

/\

/\

|
1

)

/
/

)

/5
/

03

/[
/

4

Element

value

next

Element

value

next

Element

value

Element

next value

next

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis

The loop

terminates in 3

iterations!

BYTECODE'13

4/15

Scenario

Scenario

Given the following Java instructions,
while(x!=null)

X=X.next;

Does the loop halt?
@ Assuming p(x) = h before starting the loop.

N\ AN

| /[% /5 /[

) / 7 / o3 / %4

Element lement Element Element
value next value next value next value next

N e

I A]

It depends on the cyclicity of variable x.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis

The loop does
not terminatel!

BYTECODE'13

4/15

Can we refine them?

Yes, by developing a field-sensitive analysis!

while(x!'=null)
X=X .next;

X .next=y;

Goal

For each program point, maintain a set of static fields F such that a
program property holds.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 /5

Can we refine them?

Yes, by developing a field-sensitive analysis!

while (x!=null) X .next=y;
X=X .next;

Goal

For each program point, maintain a set of static fields F such that a
program property holds.

We introduce the concept of path P as a tuple of fields linking two
locations inside the heap .

poe /\ /\ /\
X
Y/ P Y] h / $2 / $3 / I
€.g., 1 W“ 4 o / ° / % / o4
Wlth 7) — Element Element Element Element
value next value next value next value next
(El.next, El.next, El.next) ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 /IS

Field-sensitive properties

Let
o F: set of all fields;

@ L,(x): set of all locations reachable from x.

Unreachability for each path from x to y in state o, the fields in F
are not part of that path.

VPCF(x~Py=PnF=0)=xAly

Non-cyclicity for each cycle reachable from x in state o, the fields
in F are not part of the cycle.

V€ Ly(x),YP C F((~P L= PNF=0)=x-—~LF

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 6 /15

Abstract Interpretation

In order to make our analysis computable, we use the general framework of

Abstract Interpretation.

CONCRETE f
—-+{ >
DOMAIN C
A
ABSTRACTION CONCRETIZATION
MAP “g ¥ MAP
a1y a7y
y
ABSTRACT
DOMAIN A

fj

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13

7/ 15

Abstract Interpretation

Concrete and Abstract Domains

CONCRETE f
poMAIN P C\/\’ > C

A
@ Y - set of all states ABSTRACTION | | CoNCRETIZATION
MAP \[}' m/ MAP ol vy
@ V - set of all variables ! ik
@ F - set of all program fields v

Do ’A“v/\f(“’
e Concrete domain: C = p(X)

@ Abstract domain: A = p(V x V x p(F)) U p(V x o(F))
o Concretization map v: A — C

(Va«,A»Fb €1,3F CF.apl bAF C F’) A
y(leA)=qoeX

(Ve P e 1,3F C F.c -7 nF CF')
Our properties are under-approximated by the information in /.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 8 /15

Methodology

Methodology

@ Program Under Analysis

class Element{
private Object value;
private Element prec, next;

public Element (Object value){
this.value=value;
¥
public Element(Object value, Element prec){
this.value=value;
this.prec=prec;
prec.next=this;
}
¥
public class MWexample{
public static void main(String[] args){
Element top = new Element(new Integer (0));
for(int i=1;i<=3;i++)
top = new Element(new Integer(i),top);
}
}

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 9 /15

Methodology

© Program Under Analysis

class Element{

private Object value;
private Element prec, next;

public Element(Object value){
this.value=value;

}

public Element(Object value, Element prec){
this.value=value;
this.prec=prec;
prec.next=this;

}

¥

public class MWexample{

public static void main(Stringl[] args){
Element top = new Element(new Integer (0));
for(int i=1;i<=3;i++)

top = new Element(new Integer(i),top);
}
¥

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis

@ Java Bytecode

invokespecial #1 <Object/<init>()V>
aload_0

aload_1

putfield #2 Element.value:
aload_0

aload_2

putfield #3 Element.prec:

aload_2

aload_0

putfield #4 Element.next:

return

Object

Element

Element

BYTECODE'13

9/ 15

Methodology

© Program Under Analysis

class Element{

private Object value;
private Element prec, next;

public Element(Object value){
this.value=value;

}

public Element(Object value, Element prec){
this.value=value;
this.prec=prec;
prec.next=this;

}

¥

public class MWexample{

public static void main(Stringl[] args){
Element top = new Element(new Integer (0));
for(int i=1;i<=3;i++)

top = new Element(new Integer(i),top);
}
¥

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis

@ Java Bytecode
invokespecial #1 <Object/<init>()V>
aload_0
aload_1
putfield #2 Element.value:
aload_0
aload_2
putfield #3 Element.prec:
aload_2
aload_0
putfield #4 Element.next:
return

Object
Element

Element

Control Flow Graph

load 0 Element
load 1 Object
putfield Element.value: Object

catch
throw java lang Throwable

load 0 Element
load 2 Element
putfield Element.prec: Element

load 2 Element
load 0 Element.

putfield Element.next: Element
return void

BYTECODE'13

9/ 15

Constraint Based Static Analysis

From the Control Flow Graph we build the Abstract Constraint Graph

@ Nodes represent bytecode
instructions.

@ Arcs represent the abstract
semantics.

@ Each node is decorated with an
abstract set /.

@ Each arc is decorated with a
propagation rule.
o Propagation Rules i
o defined for each type of arc,
depending on its sources;
e state how the information in
each node is propagated.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis

pE]
NODE 2
call java.lang.Object. (nit)) : void

IS8
NODE 3/
load 0 Element

3
NODE 4
load 1 Object
3

NODE 5
putfield Element value: Object
6

NODE 6
load 0 Element.

3

NODE 7
load 2 Element.

NODE
putfield Element.prec: Element

6
NODE 9
14 23

NODE 10
load 0 Element.

NODE 11
putfield Element.next: Element
6

NODE 12
return void

BYTECODE'13

10 / 15

Propagation Rules

@ Their definitions can became
. load 0 Element
complex whenever they exploit — §

other static analyses.

@ The unreachability and
non-cyclicity information is
propagated along the arcs of the
ACG until reaching a fix-point.

NODE 14
catch

13
NODE 7
114 load 2 Element

3
NODE 8
putfield Element.prec: Element

26

NODE 9
load 2 Element

£14 3

NODE 10
load 0 Element

@ It exists since they are all
monotonic functions. :

6

NODE 12
return void

@ The fix-point is the maximal
solution of the ACG with respect
to the partial order D.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 11 / 15

Example: putfield x.f:t

ins: ¥ — Y/

local vars stack vars

\

A{lsjrisjazs) i) - ((s), k(R (sj-2)-9)(f) = sj-1])
Y
b

Sj—2~Sj]

It changes the paths between locations!

How to correctly propagate the information w.r.t this instruction?
KEY IDEA: exploit the result of the possible reachability analysis.

(x,y) g MR = x /> y
Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 12 / 15

Example: putfield k.f:t (cont.)

. f .
S§j—2~78j—1

e.g., field-sensitive unreachability

o for each d~Fw such that dss;_» V sj_1/~w, F does not change
after the putfield node.

o for each ay+Fx such that (a,s;_2), (sj_1,x) € MR, F probably
changes:
for sure, after the putfield, F does not contain the field f!

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 13 /15

Conclusions

© Build an under-approximated analysis to state two field-sensitive
properties.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 14 / 15

Conclusions

© Build an under-approximated analysis to state two field-sensitive
properties.
@ Exploit the abstract interpretation framework to prove its correctness.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 14 / 15

Conclusions

© Build an under-approximated analysis to state two field-sensitive
properties.
@ Exploit the abstract interpretation framework to prove its correctness.

e each propagation rule M¥ correctly approximates the set of states
obtained by the correspondent instruction ins*’ execution:
for each | € A, ins(y (1) C~(M()

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 14 / 15

Conclusions

© Build an under-approximated analysis to state two field-sensitive
properties.
@ Exploit the abstract interpretation framework to prove its correctness.

e each propagation rule M¥ correctly approximates the set of states
obtained by the correspondent instruction ins*’ execution:
for each | € A, ins(y (1) C~(M()
o the analysis correctly approximates the semantics of the program with
respect to the two properties defined:
let = ([ins||| o) be an execution and /s the approx information,
o € Y(hns)

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 14 / 15

Conclusions

© Build an under-approximated analysis to state two field-sensitive
properties.
@ Exploit the abstract interpretation framework to prove its correctness.

e each propagation rule M¥ correctly approximates the set of states
obtained by the correspondent instruction ins*’ execution:
for each | € A, ins(y (1) S~ (M)
o the analysis correctly approximates the semantics of the program with
respect to the two properties defined:
let = ([ins||| o) be an execution and /s the approx information,
o € Y(hns)

Future works: implementing this analysis in Julia Tool to improve
the precision of its termination checker.

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 14 / 15

Thank You

Thank Youl

Scapin and Spoto (univr.it) Unreachability & Non-Cyclicity Analysis BYTECODE'13 15 / 15

	Static Analysis
	State of the Art
	Scenario
	Properties
	Abstract Interpretation
	Methodology
	Conclusions

