Modeling the Android Platform

Etienne Payet
LIM-ERIMIA, université de la Réunion

BYTECODE'13
Saturday 23 March 2013

Etienne Payet (LIM-ERIMIA)

Modeling the Android Platform

BYTECODE'13

1/

50

Reunion, a part of France and Europe (OMR of EU)

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 2 /50

Outline

@ Analyzing Android applications

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 3 /50

What is Android?

An operating system (OS) for:

@ mobile devices (smartphones, tablets),
e embedded devices (televisions, car radios, ...),

e x86 platforms (http://www.android-x86.org).

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13

http://www.android-x86.org

Worldwide mobile device sales in 3Q12

(thousands of units)

Operating System 3Q123Q12 Market Share (%) 3Q113Q11 Market Share (%)

Units Units
§android 122,480.0 72.4) 60,490.4 52.5
i0s 23,550.3 13.9 17,295.3 15.0
Research In Motion §,946.8 5.3 12,7011 11.0
Bada 5,054.7 3.0 2,478.5 2.2
Symbian 4,404.9 2.6 19,500.1 16.9
Microsoft 4,058.2 2.4 1,701.9 1.5
Others 683.7 0.4 1,018.1 0.9
Total 169,178.6 100.0115,185.4 100.0

Source: Gartner (November 2012)

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 5 /50

What is Android?

A language:

o for developping applications for the Android OS,
@ Java with an extended library for mobile and interactive applications,

@ based on an event-driven architecture.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 6 /50

Building an Android application

Application
Reources

R java

Application
Source Code

Java
Interfaces

Java
Compiler

.class Files

.dex files

-aidl Files

ard Party
Libraries

and .class
Files

(http://developer.android.com/tools/building/index.html)

yet (LIM-ERIMIA)

Modeling the Android Platform

BYTECODE'13

http://developer.android.com/tools/building/index.html

@ Their format is optimized for minimal memory usage: the design is
driven by sharing of data,

@ they contain Dalvik bytecode,

@ dex stands for Dalvik executable.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 8 /50

Dalvik bytecode

@ It is run by an instance of the Dalvik Virtual Machine (DVM),
e DVM # JVM (register-based vs stack-based),

@ register-based VMs are well-suited for devices with constrained
processing power: on average, they are faster than stack-based VMs.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 9 / 50

Android applications

@ They can be downloaded from anywhere

e Google play (official store),
e Amazon, AppsApk.com, pandaapp, ...

@ They are not necessarily digitally signed.

= Reliability is a major concern for users and developers.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13

e 00 3/02/Pandalab: I .pdf A
(1>] (&3] [2] %3 press.pandasecurity.com o —cone 5/2013/02/Pandalabs-Annual-Report-20 ¢ Jue
Gmail_ Wikipédia _Informations * _Enseignement ¥ Recherche ¥ UR ™ Livres-Revues ¥ Divers ¥
Mobile Phone Malware
I fact, we learned that Google, tired of the malicious apps found on Play Store, has started
analyzing apps before putting them in their catalog in order to detect anomalous behavior.
According to their own sources, they have managed to reduce malicious app downloads by
40 percent.

g
B

Unfortunately, despite these efforts, criminals continued to target the Android mobile
platform through 2pps not always accessible through Play Store. This was the case of
Bmaster, a remote access Trojan (RAT) on the Android platform that tried to pass itself off
as a legitimate application.

We also saw Trojans exclusively designed to steal data from infected devices: from call
and text message records to users' contact lists. Android is potentially exposed to far more
security risks than its biggest competitor (iPhone and its i0S), as it allows users to get their
apps from anywhere their want. However, using the official Android marketplace is no
security quarantee either, as it has also been targeted by cyber-crooks luring users into
installing Trojans disquised as legitimate apps. Something which, by the way, has also
happened to Apple's App Store, but to a lesser extent than to Google's Play Store.

2012 at a glance

ned primarily for mobile phones. Over the last few months,
as amobill browser alternative on Android smartphones,
Is to trick users. I the latest attack, criminals offered the
than Google's Play store. However, installing the application
and also a Trojan that sent SMS messages to premium-rate

Why is Android the most targeted mobile platform? Well, this is

due to a number of reasons: irstly, Android allows its users to get

their apps from anywhere they want. They don't necessariy have

10 o to the official store, nor must applications be digitally signed

as with 105 Secondly, cyber-crooks would have never set their eyes

on this platform if it werent for the large number of users it has.
[gIeE{elIs] i1 1une, Google announced that 400 milion Ancoid devices had

attempted to pass themselves off as popular mobile apps, in F1G.02. 500 Loy Deen activated, a figure that reached 500 millon at the beginning of

d with a legitimate version of the Opera Mini mobile browser ANDROID DEVICES NOW September, with 1.3 million activations per day.

nothing was wrong as they could simply use the real software VATED.

Etienne Payet (LIM-ERIMIA) ng the Android Platform BYTECODE'13 11

Analyzing Android applications

For finding

@ malicious code (e.g., security and privacy vulnerabilities)

@ bugs

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 12 / 50

Google's analyses

“Google has started analyzing apps before putting them in their catalog in
order to detect anomalous behavior. According to their own sources, they
have managed to reduce malicious app downloads by 40 percent.”

(Pandalabs Annual Report 2012)

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform

BYTECODE'13 13 / 50

Static analyses for finding security/privacy vulnerabilities

@ Barrera, Kayacik, van Oorschot, Somayaji. A methodology for
empirical analysis of permission-based security models and its
application to Android. Proc. of CCS'10.

@ Chin, Felt, Greenwood, Wagner. Analyzing inter-application
communication in Android. Proc. of MobiSys'11.

@ Enck, Octeau, McDaniel, Chaudhuri. A study of Android application
security. Proc. of SEC'11.

e Felt, Chin, Hanna, Song, Wagner. Android permissions demystified.
Proc. of CCS'11.

@ Fuchs, Chaudhuri, Foster. SCanDroid: Automated security
certification of Android applications. Draft, 2009.

e Kim, Yoon, Yi, Shin. ScanDal: Static analyzer for detecting privacy
leaks in Android applications. MoST'12.

@ Wognsen, Karlsen. Static analysis of Dalvik bytecode and reflection in
Android. Master's thesis, Aalborg University, 2012.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 14 / 50

Static analyses for finding bugs

o Klocwork. http://www.klocwork. com.

e Payet, Spoto. Static analysis of Android programs. Information &
Software Technology, 2012.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 15 / 50

http://www.klocwork.com

Dynamic analyses for finding security vulnerabilities

@ Bugiel, Davi, Dmitrienko, Fischer, Sadeghi, Shastry. Towards taming
privilege-escalation attacks on Android. Proc. of NDSS'12.

o Dietz, Shekhar, Pisetsky, Shu, Wallach. QUIRE: Lightweight
provenance for smart phone operating systems. Proc. of USENIX
Security Symposium. 2011.

@ Enck, Gilbert, Chun, Cox, Jung, McDaniel, Sheth. TaintDroid: An
information-flow tracking system for realtime privacy monitoring on
smartphones. Proc. of OSDI'10.

o Felt, Wang, Moshchuk, Hanna, Chin. Permission redelegation:
Attacks and defenses. Proc. of USENIX Security Symposium. 2011.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 16 / 50

Symbolic execution for analyzing programs

@ Jeon, Micinski, Foster. SymDroid: Symbolic execution for Dalvik
bytecode. Submitted, July 2012.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 17 / 50

Modeling the Android platform

e Dalvik # Android

@ Some of these analyses rely on a formal operational semantics for
Dalvik.

@ But none of them provide a formal semantics for key specific features
of the Android platform.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 18 / 50

Outline

© Operational semantics for Dalvik

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 19 / 50

Dalvik registers

@ Each method has a fresh set of registers.

@ Invoked methods do not affect the registers of invoking methods.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 20 / 50

Dalvik instructions

Move between registers (move, move-object, move-wide, ...),
constants to registers (const, const/4, const/16, ...),
operations on int, long, float, double (add-int, sub-int, ...),
instance creation (new-instance),

read /write member fields (iget, iput, ...),

read /write static fields (sget, sput, ...),

array manipulation (new-array, array-length, ...),

read /write array elements (aget, aput, ...),

execution control (goto, if-eq, if-1t, ...),

method invocation (invoke-virtual, invoke-super, ...),

setting the result value (return-void, return, ...),

getting the result value (move-result, move-result-object, ...),

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13

Example (smali syntax)

.class public LFactorial;
.super Ljava/lang/Object;

.method public static factorial(I)I
.registers 2

const/4 v0, 1
if-lez v1, :end

sub-int vO0, v1, vO

invoke-static {v0}, LFactorial;->factorial(I)I
move-result vO

mul-int vO, v1, vO

:end
return vO
.end method

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform

BYTECODE'13

22 / 50

Operational semantics for the whole Dalvik

[WK12] Wognsen, Karlsen. Static analysis of Dalvik bytecode and
reflection in Android. Master's thesis, Aalborg University,
2012.

m.instructionAt(pc) = move ri r
(S,H,(m,pc,R) :: SF) = (S,H,(m, pc + 1, R[rn — R(r)]) :: SF)

S is a static heap, H is a heap, SF is a call stack
m is a method, R € Register — Value is a set of local registers

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 23 / 50

Intermediate languages

@ They consist of a small set of instructions into which Dalvik can be
easily translated.

@ Dalvik Core:
Kim, Yoon, Yi, Shin. ScanDal: Static analyzer for detecting privacy
leaks in Android applications. MoST'12.

o u-Dalvik:

Jeon, Micinski, Foster. SymDroid: Symbolic execution for Dalvik
bytecode. Submitted, July 2012.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 24 / 50

u-Dalvik vs the others

o u-Dalvik operational semantics constructs a path condition ¢ which
records which conditional branches have been taken thus far:

m = (X[n] < X[r])
Pr=mNANL.D SAT(¢¢)
(X,if rp I rp then pc;) = L[o — ¢¢, pc— pcyl

@ u-Dalvik provides an instruction for checking a property of interest:

=SAT(=X[r])
(¥,assert r) = X[pc — pc + 1]

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 25 / 50

Outline

e Designing an operational semantics for Android

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 26 / 50

Provide a formal basis for the development of analyses that consider the
complex flow of information inside Android applications, that usually
consist of interacting components.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 27 / 50

Android application components

(Activities) single screens with a visual user interface
(Services) background operations with no interaction with the user
(Content providers) data containers such as databases

(Broadcast receivers) objects reacting to broadcast messages

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 28 /

Android application components

@ Each type of component has a distinct lifecycle that defines how the
component changes state.

@ A component can invoke another component, but

component invocation # method invocation.

@ A component is a possible entry point into the program.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 29 / 50

Callback methods

Callback methods are automatically invoked by the system:

@ when components switch from state to state,

@ in reaction to events.

Android programs do not usually call such methods explicitly.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 30 / 50

The lifecycle of an activity

— onCreate()

v

onStart()
User navigates
1o the activity onResume()
\ 7 N
(/ Appmu \:| (running)
b : v
Another activity comes
into the foreground
Apps with higher priority
need memory onPause()

I
The activity is
no longer visible

onstop()
I

-— onRestart()

User returns
10 the activity

|
User navigates
to the activity
e —

The activity is finishing or
being destroyed by the system

v

onDestrey()

et (LIM-ERIMIA)

BYTECODE'13 31

XML files

@ They are used to build parts of Android applications (e.g., GUI).

@ They are dynamically inflated by the system to create the objects that
they describe.

@ Inflation makes heavy use of reflection.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 32 /50

An example (1/

res/layout/caller.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<TextView android:id="@+id/message"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/empty" />

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/launch"
android:onClick="launchActivity" />

</LinearLayout>

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 33 /50

An example (2

Caller. java

public class Caller extends android.app.Activity {
private TextView mMessageView;
protected void onCreate(Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;

setContentView(R.layout.caller);
mMessageView = (TextView) findViewById(R.id.message);

public void launchActivity(View v) {

3

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 34 / 50

An example (

Caller. java

private final static int CALLEE = O;
public void launchActivity(View v) {
startActivityForResult(new Intent(this, Callee.class), CALLEE);
System.out.println("Hello!");
¥
protected void onActivityResult(int requestCode, int resultCode, ...) {
switch(requestCode) {
case CALLEE:
switch(resultCode) {
case RESULT_OK:
mMessageView.setText ("OK button clicked"); break;
case RESULT_CANCELED:
mMessageView.setText ("Cancel button clicked"); break;
¥
}
}

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 35/ 50

An example (4

Callee. java

public class Callee extends android.app.Activity {

protected void onCreate(Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView(R.layout.callee) ;

}

public void returnOk(View v) { // OK button clicked.
setResult (RESULT_OK) ;
finish(Q);

}

public void returnCancel(View v) { // Cancel button clicked.
setResult (RESULT_CANCELED) ;
finish();

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 36 / 50

An example (5/5)

& ul B 101

(CEErUUURNUUPU D < S— R [T

Cancel button clicked
Cancel
Launch activity

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 37 / 50

(rlmlp) ex

e ris an array of registers (r' denotes the ith register)

7 is a stack of pending activities

@ 1 : Location — Object is a heap

an object maps its fields into values

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13

Semantics of Dalvik instructions

o const d,c = Ar || u).{rld = c] | 7|)

(rld = p(r) O 7|) i r 0

e iget d,i,f = Xr|m|p). {undeﬁned otherwise

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 39 / 50

Semantics of library methods (macro instructions)

e finished (boolean) and res (integer) are fields of the current activity

@ startActivityForResult A= X{r|x|p).(r|A 7| p)

where A is a subclass of android.app.Activity

(r|m| p if finished

@ setResult i = A(r| 7|).
il {<r||7rH plres — i]) otherwise

o finish = A(r |7 | u).{r | 7| u[finished — true])

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13

Android programs as graphs of blocks

@ A program is a graph of blocks of code.

A graph contains many disjoint subgraphs, each corresponding to a
different method.

@ A block with w instructions and p successor blocks is written as

ins; b
insy = -
insy bp

@ If mis a method, then b, denotes the block where m starts.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 41 / 50

Operational semantics of method execution

@ (Instruction execution) ins ¢ {call,move-result, return}

(P 7|) = ins((r | 7 1)
N b b

[(m]= 210 caomopw (] = M) saorow
P p

e (Continuation)

1<i<p

b
(1= 51. [r)aomop~ (bi|r)aomop
P

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 42 / 50

Operational semantics of method execution

e (Explicit method call)

b1 bl
b — | call {s0y-+ sSw },m | "
= = =[ret] =

rest bp

rr=[0=ro ... we rv

the lookup procedure of m selects m’

(b|r)=aomop~ (by |r) = (b]|r)aomop

@ (Method return)

b1 bl
b= move—feesstult d = bp I = bp
([omwms])5 (bl 7) 5 aomop~ (B[(Fld = r]) 5 aomop

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 43 / 50

Operational semantics of activity execution

e Android manages activities using an activity stack (Q).

o We formalize an activity as a tuple (¢|s| 7| «):

e (is the location of the activity in memory,
e s is the lifecycle state of the activity.

% create }—>| start H resume
running [)
4
‘destroy |@{ stop ‘<—{ pause

Moves between lifecycle states.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 44 / 50

Operational semantics of activity execution

@ (Implicit call to a callback method)

s # running (s,s") € Lifecycle
the lookup procedure of a method corresponding to s’ selects m

(sl |([xevarn] [) = Qo= (C]s" |7 {bm |[€])) =: Qo p

s = running (s,s’) € Lifecycle
7 # eV p(f)(finished) = true = s’ = pause
the lookup procedure of a method corresponding to s’ selects m

(s m|([xevarn] [) = Qo= (C]s" |7 {bm [[€])) = Qo p

BYTECODE'13 45 / 50

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform

Operational semantics of activity execution

@ (Starting a new activity)

s=pause o= ([] |)

(' is a fresh location and a is a new object of class A
the lookup procedure of a method corresponding to s’ selects m
s’ = create o = (bm |[¢']) = pull — a
(CTsTA=rla) = Qou= (s [y = ((]s[mla) = Qo

@ (Returning from an activity)

(6' ” pause | e |([xeturn | |_)) p(¢')(finished) = true
= (l]s]e[{[xevurn] ||f 56 {pause, stop}

the Iookup procedure of onActivityResult selects m
& Qop= (Uls[elbmll) @ = Qop

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 46 / 50

Outline

@ Conclusion

yet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13

Analyzing Android applications

For finding bugs and malicious code.

@ Formal semantics can provide a formal basis.

@ Some operational semantics have been proposed for Dalvik.

This work is the first attempt at defining an operational semantics for
Android.

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 48 / 50

Modeling the whole Android platform

@ We consider a simplified situation:

e programs only consist of activities,
e activity interactions only occur in state running.

@ The whole platform is very complex to model:

e applications may consist of several kinds of components,

@ activity interactions may occur in other states than running,

o there is a large number of implicitly invoked callback methods,
e a component of another program may be invoked,

[}

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13

Thank you!

Questions?

Etienne Payet (LIM-ERIMIA) Modeling the Android Platform BYTECODE'13 50 / 50

	Analyzing Android applications
	Operational semantics for Dalvik
	Designing an operational semantics for Android
	Conclusion

